В. В. Щиголев, О расширениях и правилах ветвления модулей, близких к вполне расщепляемым, *Матем. сб.*, 2005, том 196, номер 8, 119–160

DOI: https://doi.org/10.4213/sm1408

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
17 декабря 2018 г., 18:23:48
В. В. Шиголев

О расширениях и правилах ветвления модулей, близких к вполне расщепляемым

В работе описываются модули $D^\lambda\downarrow_{\Sigma_{n-1}}$ и $D^\lambda\uparrow_{\Sigma_{n+1}}$ для некоторых простых $K\Sigma_n$-модулей (вполне расщепляемых или близких к ним) D^λ, где K — поле характеристики $p > 0$ и Σ_n — симметрическая группа степени n. Этот результат основан на оценке сверху размерностей Ext^1-пространств между некоторыми простыми модулями.

Библиография: 22 названия.

§1. Введение

Зафиксируем поле K характеристики $p > 0$. Обозначим через Σ_n симметрическую группу степени n. Мы будем предполагать естественное включение $\Sigma_{n-1} \subset \Sigma_n$. Для теории представлений симметрической группы принципиальное значение имеет вычисление модулей $D^\lambda\downarrow_{\Sigma_{n-1}}$ (в случае $n > 0$) и $D^\lambda\uparrow_{\Sigma_{n+1}}$, где D^λ — простой $K\Sigma_n$-модуль, соответствующий p-регулярному разбиению λ числа n. Имеет место следующее разложение по блокам алгебр $K\Sigma_{n-1}$ и $K\Sigma_{n+1}$ (см. [1; 55.2] и [2; §1]):

$$D^\lambda\downarrow_{\Sigma_{n-1}} = \bigoplus_{\alpha \in \mathbb{F}_p} \text{Res}_\alpha D^\lambda, \quad D^\lambda\uparrow_{\Sigma_{n+1}} = \bigoplus_{\alpha \in \mathbb{F}_p} \text{Ind}_\alpha D^\lambda.$$

В работах [3] и [4] содержится много информации о модулях $\text{Res}_\alpha D^\lambda$ и $\text{Ind}_\alpha D^\lambda$. Например, известны циклы этих модулей. Известно также, когда любой произвольно выбранный из этих модулей прост. С другой стороны, не все композиционные кратности непростых модулей $\text{Res}_\alpha D^\lambda$ и $\text{Ind}_\alpha D^\lambda$ в общем случае известны.

Однако для некоторых непростых блочных компонент все вышеупомянутые кратности могут быть точно найдены. Например, при помощи основного результата работы [5] в настоящей работе мы доказываем теоремы 9.4 и 9.5, которые вместе с известным утверждением 9.1 дают формулы композиционных кратностей

1) модуля $D^\lambda\downarrow_{\Sigma_{n+1}}$, где D^λ — вполне расщепляемый $K\Sigma_n$-модуль (см. [6; определение 0.1]);
2) модуля $D^\lambda\uparrow_{\Sigma_{n+1}}$,

где D^λ — вполне расщепляемый $K\Sigma_n$-модуль, отличный от $D^{(1^p-1)}$, и B — нижняя λ-добавляемая клетка.

Теорема 6 работы [5] подсказывает, для каких еще модулей можно надеяться получить аналогичные результаты. Разбиение λ называется большим (для данного p), если модуль D^λ вполне расщепляемый, λ содержит более одной венецианской
части и хотя бы один косой p-крюк. В этом случае через $\tilde{\lambda}$ обозначается разбienie, полученное из λ перемещением всех клеток из последней строки наивысшего косого p-крюка разбienia λ в первую. Больные модули существуют только при $p > 2$. В этой работе мы доказываем оценку сверху (теорема 8.2) размерностей пространств $\text{Ext}_{\mathbb{Z}_m}^n(D^\lambda, D^\mu)$, когда λ не доминирует строго μ, аналогичную оценку теоремы 6 работы [5]. Существуют примеры, показывающие, что эта оценка не точна. Доказательству точной формулы планируется посвятить отдельную работу. Однако полученной оценке достаточно, чтобы

1) получить точную формулу (утверждение 9.1 и теорема 9.6) композиционных кратностей модуля $D^\lambda \sum_{n+1}$, где λ — большое разбиение числа n такое, что $h(\lambda) \geq (p + 3)/2$, $\lambda_1 + h(\lambda) \neq 0$ (mod p) и $h(\lambda) \neq p - 1$;
2) выдвинуть гипотезы о том, чему равны композиционные кратности некоторых модулей $\text{Ind}^\mu D^\lambda$ и $\text{Res}_\mu D^\lambda$ (гипотезы 9.7–9.9), подтвержденные вычислениями в пределах известных матриц разложения.

В [4] вычисляются композиционные кратности модуля D^μ в $\text{Ind}^\mu D^\lambda$ и $\text{Res}_\mu D^\lambda$ для μ, полученного соответственно добавлением или удалением одной клетки разбиения λ. Применяя отображение Мульлино m (см. [7] и [8]), можно вычислить те же композиционные кратности в случае, когда $m(\mu)$ получается соответственно добавлением или удалением одной клетки разбиения $m(\lambda)$. Однако для доказательства гипотез 9.7–9.9 требуется показать, что выше упомянутые кратности равны 1 для некоторых разбиений μ, не имеющих ни одного из двух перечисленных видов. Сделаем предположение, что этого можно добиться методами работы [3].

Доказательство теоремы 9.6 требует много вычислений, которые изложены в §§4–9. Однако эта работа опирается, потому что существует опасение, что только расширенные модули устроены слишком хорошо (например, известны их размерности) и теоремы 9.4 и 9.5 представляют исключительные случаи. Однако теорема 9.6 доказывает, что это не так и можно надеяться на получение новых точных правил ветвлений в окрестности вполне расширенных модулей.

Статья организована следующим образом. В §2 вводятся основные объекты, используемые в тексте. Основным отличием техники настоящей работы от техники работы [5] является использование абаков. Теория абаков изложена в [9]. В §3 доказываются неравенства. В частности, мы получаем наиболее полезные неравенства из §3 работы [5] методом, стандартным для гомологической алгебры. В §4 вычисляется индуктивный способ получения оценок сверху размерностей пространств $\text{Ext}_{\mathbb{Z}_m}^n(D^\lambda, D^\mu)$. При помощи него мы заново получаем основной результат работы [5], но гораздо более простым и наглядным за счет использования абаков способом. Небольшая, хотя и необходимая модификация этого способа используется для доказательства теоремы 8.2. Для получения более точной оценки в этой теореме требуется вспомогательная оценка сверху, полученная в §7. Чтобы сделать эту вспомогательную оценку более точной, мы используем умножение на знакопеременное расширение и связанное с ним отображение Мульлино. Соответствующие вычисления изложены в §6. Наконец, в §9 доказаны выше упомянутые теоремы о композиционных кратностях ограниченных и индуцированных модулей.
§ 2. Обозначения и определения

2.1. Общие положения. На протяжении всей работы мы фиксируем поле K положительной характеристики p. Все колыцы и модули будем считать конечномерными над K. Для $n \in \mathbb{Z}$ через $n + p\mathbb{Z}$ обозначим $n + p\mathbb{Z}$ — элемент колыца $\mathbb{Z}/p\mathbb{Z}$. Для пар $(n, m) \in \mathbb{Z} \times \mathbb{Z}$, где $m > 0$, через $\text{quo}(n, m)$ и $\text{rem}(n, m)$ обозначим целые числа такие, что $n = \text{quo}(n, m)m + \text{rem}(n, m)$ и $0 \leq \text{rem}(n, m) < m$. Для целых чисел r и s введем следующие обозначения:

$$[r, s] = \{i \in \mathbb{Z} : r \leq i \leq s\}, \quad (r, s) = \{i \in \mathbb{Z} : r < i \leq s\},$$

$$[r, s) = \{i \in \mathbb{Z} : r < i < s\}, \quad (r, s) = \{i \in \mathbb{Z} : r < i < s\}.$$

Для произвольного утверждения ρ через $[\rho]$ обозначим 1, если это утверждение выполнено, и 0 в противном случае. Для любого подмножества S множества целых чисел определим его характеристическую функцию $S(n) = \{n \in S\}$, где $n \in \mathbb{Z}$. Определены упорядоченное множество $\mathbb{Z}' = \mathbb{Z} \cup \{+\infty\}$, где $+\infty > n$ для любого $n \in \mathbb{Z}$. Для любого модуля M и простого модуля N через $[M : N]$ обозначим композиционную кратность модуля N в M.

2.2. Разбиения. Для любого наоборота a через $|a|$ будем обозначать его длину, а для натурального i такового, что $i \leq |a|$, если $|a| < +\infty$, через a_i будем обозначать i-й член элемента наоборота a.

Разбиением числа n называется бесконечный невозрастающий набор неотрицательных целых чисел, сумма элементов которого равна n. Утверждение о том, что λ — разбиение n, кратко обозначается записью $\lambda \models n$. На практике часто изображается только начальная часть разбиения конечной длины, за которой следуют нули (не путать с конечными наборами). Например, для разбиения λ запись $\lambda = (5, 3, 0)$ обозначает, что $\lambda_1 = 5$, $\lambda_2 = 3$ и $\lambda_3 = 0$ при $i \geq 3$. Высотой разбиения λ называется число $h(\lambda)$, равное количеству ненулевых частей разбиения λ. Разбиение λ, не содержащее p и более одинаковых частей, называется p-регулярным. Через $\sum \lambda$ обозначим сумму всех компонент разбиения λ.

Для разбиения λ определим его диаграмму Юнга формулой

$$[\lambda] = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} : 1 \leq i \leq h(\lambda), 1 \leq j \leq \lambda_i\}.$$

Элементы из $\mathbb{Z} \times \mathbb{Z}$ будем называть клетками. Для клетки $A = (i, j)$ положим $r(A) = i$ и $\text{res} A = j - i$. Если диаграммы разбиений λ и μ содержат одинаковое количество клеток каждого p-вагона, то мы пишем $\lambda \sim \mu$. Уделяемое, добавляемое, нормальное, хорошее, конорнамальное и хорошо разбиения λ определены в [4]. Мы также используем обозначения λ_A и λ_B, где A — уделяемая и B — добавляемая клетки разбиения λ для разбиений с диаграммами $[\lambda] \setminus A$ и $[\lambda] \cup B$ соответственно. Обозначим также через λ^t разбиение, диаграмма которого получена транспонированием диаграммы $[\lambda]$.

Для разбиения λ и целого i положим $\sigma_i(\lambda) = \sum_{1 \leq j \leq \lambda_i} i$. Считается, что разбиение λ доминирует разбиение μ, если $\sigma_i(\lambda) \geq \sigma_i(\mu)$ для любого $i \geq 1$. Этот факт записывается в виде $\lambda \geq \mu$. Запись $\lambda > \mu$ означает, что $\lambda \geq \mu$ и $\lambda \neq \mu$.

Через $h_{i, j}(\lambda)$ обозначим длину крока разбиения λ с основанием (i, j). Имеем $h_{i, j}(\lambda) = \lambda_j + \lambda^t_j - i - j + 1$. Граница (там), p-сегмент (p-segment), p-грани (p-edge), косой p-крын (p-tam hook), p-ядро (p-core) разбиения λ определены в [9] и [7]. Обозначим через $e(\lambda)$ количество клеток в p-грани разбиения λ и через $\varphi(\lambda)$ — разбиение, полученное из λ удалением его p-грани.
2.3. Модули. Каждому разбиению λ числа n соответствует $K\Sigma_n$-модуль S^λ, который называется модулем Штейнера (см., например, [10; определение 4.3]). Положим $D^\lambda = S^\lambda / \text{rad } S^\lambda$. Отображение $\lambda \rightarrow D^\lambda$ задает взаимно однозначное соответствие между p-регулярными разбиениями числа n и простыми $K\Sigma_n$-модулями.

Для $n \geq 0$ положим $\varepsilon_n = ((k + 1)^d, k(p - 1) + d, k \in Z$ и $0 \leq d < p - 1$. Важную роль в настоящей работе играет следующее утверждение.

Утверждение 2.1. Пусть $p > 2$ и $\lambda, \mu -$ разбиения числа n такие, что $h(\lambda) < p$, $\mu - p$-регулярно и $\lambda \neq \mu$. Тогда

$$\text{Ext}_{\Sigma_n}^1(S^\lambda, D^\mu) \cong \begin{cases}
K, & \text{если } \lambda = \mu = \varepsilon_n \text{ и } n \geq p; \\
0, & \text{иначе.}
\end{cases}$$

Доказательство фактически такое же, как и доказательство теоремы 2.9 работы [2]. Надо лишь установить, что $\mu = \varepsilon_n$ или $\mu = \varepsilon_n$ (после того, как предположено $\lambda_A = \varepsilon_{n-1}$ и $\gamma = \varepsilon_{n-1}$) без использования леммы 1.6.

Действительно, так как $\mu_C \leq \gamma = \varepsilon_{n-1} = \lambda_A$ и $\mu_C \neq \lambda_A$, то мы имеем $\mu_C = \varepsilon_{n-1}$. Это значит, что $\mu = \varepsilon_n$ или $\mu = \varepsilon_n$, или $\mu = \varepsilon_{n-1}$, где $D = (p, 1)$. Однако последний случай невозможен, так как $\varepsilon_{n-1} < \varepsilon_n, \varepsilon_n$ и $\lambda = \varepsilon_n$ или $\lambda = \varepsilon_n$.

Следующее утверждение доказывается так же, как теорема 2.10 работы [2], только с использованием утверждения 2.1 вместо теоремы 2.9 из [2].

Утверждение 2.2. Пусть $p > 2$ и $\lambda, \mu -$ разбиения числа n такие, что $h(\lambda) < p$, $\mu - p$-регулярно и $\lambda \neq \mu$. Тогда $\text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) \cong \text{Hom}_{\Sigma_n}(\text{rad } S^\lambda, D^\mu)$.

Наконец, отметим утверждение, следующее непосредственно из работы [9] и теоремы 2.10 работы [2].

Утверждение 2.3. В случае, когда $\lambda \neq \mu$ или когда $p > 2, \lambda = \mu$ и $h(\lambda) < p$, имеем $\text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) = 0$.

Модули $\text{Ind}_\alpha M$ и $\text{Res}_\alpha M$, где $M - K\Sigma_n$-модуль, определены, например, в §1 работы [2].

2.4. Абаки. Мы несколько модифицируем классическое определение абака, данное в [9], чтобы сделать его более симметричным и удобным для работы как с удалением, так и с добавлением клеток. Все ниже следующие факты могут быть доказаны методами работ [9] и [8].

Абаком называется любое отображение $\Lambda: Z \rightarrow \{0, 1\}$, для которого существует число N такое, что $\Lambda(n) = 1$ при $n \leq -N$ и $\Lambda(n) = 0$ при $n > N$. Смещением абака Λ называется предел $\text{shift}(\Lambda) = \lim_{x \rightarrow -\infty} x + \sum_{n \geq x} \Lambda(n)$, взятый по целым x. Каждый абак Λ задает инъективное отображение $\text{node}_\Lambda: Z \rightarrow Z \times Z$ по формуле

$$\text{node}_\Lambda(a) = \left(1 + \sum_{n > a} \Lambda(n), \sum_{n \leq a} (1 - \Lambda(n))\right).$$

Справедливы формулы

$$c - r = a - \text{shift}(\Lambda), \quad \text{где } \text{node}_\Lambda(a) = (r, c);$$

$$\text{res}\text{node}_\Lambda(a) = \overline{a} - \text{shift}(\Lambda).$$

(2.1)
Действительно, выберем произвольное целое \(x \) такое, что \(\Lambda(n) = 1 \) при \(n < x \). Имеем

\[
c - r = \sum_{x \leq n \leq a} (1 - \Lambda(n)) - 1 - \sum_{n > a} \Lambda(n) = a - x - \sum_{x \leq n} \Lambda(n) = a - \text{shift}(\Lambda).
\]

Элемент \(a \in \mathbb{Z} \) такой, что \(\Lambda(a) = 1 \), называется бусинкой (bead) абака \(\Lambda \), а элемент \(b \in \mathbb{Z} \) такой, что \(\Lambda(b) = 0 \), называется пробелом (space) абака \(\Lambda \).

Бусина \(a \) абака \(\Lambda \) называется:

1) собственной, если существует пробел \(b \) абака \(\Lambda \), строго меньший \(a \);
2) начальной, если \(\Lambda(a - 1) = 0 \);
3) нормальной, если она начальная и \(\sum_{0 < k \leq s} (\Lambda(a + p k) - \Lambda(a - 1 + p k)) \geq 0 \) для любого \(s > 0 \);
4) хорошей, если она наименьшая нормальная бусинка данного \(p \)-вычета;
5) поднимаемой, если \(\Lambda(a - p) = 0 \).

Пробел \(b \) абака \(\Lambda \) называется:

1) начальным, если \(\Lambda(b - 1) = 1 \);
2) конориальной, если он начальный и \(\sum_{0 < k \leq s} (\Lambda(b - 1 - p k) - \Lambda(b - p k)) \geq 0 \) для любого \(s > 0 \);
3) конорощим, если он наивысшей конориальной пробел данного \(p \)-вычета.

Если абак содержит хотя бы одну собственную бусинку, то он называется собственным. В противном случае он называется несобственным.

Первая из формул (2.1) показывает, какое разбиение поставить в соответствие абаку \(\Lambda \). Пусть \(a_1, a_2, \ldots \) — все бусинки абака \(\Lambda \), упорядоченные в порядке убывания. Тогда имеем \(\text{node}_\Lambda(a_i) = (i, \lambda_i) \) для некоторых чисел \(\lambda_i \). Определим разбиение \(P(\Lambda) = (\lambda_1, \lambda_2, \ldots) \). Считается, что \(\lambda \) — абак разбиения \(P(\Lambda) \). Обозначим через \(h \) количество собственных бусинок абака \(\Lambda \). Тогда \(P(\Lambda) \) имеет высоту \(h \).

В связи с этим количество собственных бусинок абака будет называться его высотой. Имеем \(h_{\text{it}}(P(\Lambda)) = a_i - b \) для \(1 \leq i \leq h \), где \(b \) — наименьший пробел абака \(\Lambda \), который, как видно, равен \(\text{shift}(\Lambda) - h \).

Пусть \(\Lambda \) — произвольный абак и \(m \in \mathbb{Z} \). Для каждого \(n \in \mathbb{Z} \) положим

\[
(m + \Lambda)(n) = \Lambda(n + m).
\]

Элементарная проверка показывает, что

\[
P(m + \Lambda) = P(\Lambda), \quad \text{shift}(m + \Lambda) = -m + \text{shift}(\Lambda).
\]

Заметим, что для любого разбиения \(\lambda \) существует в точности один абак \(\Lambda \) фиксированного смещения такой, что \(\lambda = P(\Lambda) \). Из этого факта и формулы (2.2) следует, что если \(P(\Lambda) = P(M) \), то \(\text{shift}(\Lambda) + \Lambda = \text{shift}(M) + M \).

Утверждение 2.4. Образование \(\text{node}_\Lambda \) задает взаимно однозначное соответствие

1) множества \(\Lambda \)-начальных бусинок и множество \(P(\Lambda) \)-удаляемых клеток;
2) множества \(\Lambda \)-нормальных бусинок и множество \(P(\Lambda) \)-нормальных клеток;
3) множества \(\Lambda \)-хороших бусинок и множества \(P(\Lambda) \)-хороших клеток;
4) множества Λ-начальных пробелов и множества $P(\Lambda)$-добавляемых клеток;
5) множества Λ-конормальных пробелов и множества $P(\Lambda)$-конормальных клеток;
6) множества Λ-козырьков пробелов и множества $P(\Lambda)$-козырьков клеток.

Пусть c – начальная бусинка или начальный пробел абака Λ. Обозначим через Λ_c в первом случае и через Λ^c во втором абак, значение которого в точке n равно $1 - \Lambda(n)$, когда $n = c$ или $n = c - 1$, и равно $\Lambda(n)$, когда $n \neq c$ и $n \neq c - 1$.

С операциями удаления и добавления клеток только что описанные преобразования абаков связаны следующими формулами:

$$P(\Lambda_c) = P(\Lambda)_{\text{node}}(c),$$
$$P(\Lambda^c) = P(\Lambda)_{\text{node}}(c),$$
если c – начальная бусинка,
$$P(\Lambda^c) = P(\Lambda)_{\text{node}}(c),$$
если c – начальный пробел.

Одной из основных причин использования абаков является то, что при помощи них легко проследить удаление косых p-крюков и p-греней. Пусть a – подвижная бусинка абака Λ. Обозначим через $\text{hook}_a(a)$ косой крюк разбиения $P(\Lambda)$ с основанием $(\Sigma_{n \geq a} \Lambda(n), \Sigma_{n \leq a-p} (1 - \Lambda(n)))$. Абак, значение которого в точке n равно $1 - \Lambda(n)$, когда $n = a$ или $n = a - p$, и равно $\Lambda(n)$, когда $n \neq a$ и $n \neq a - p$, считается полученным из Λ подвижным бусинкой a на одну позицию.

Утверждение 2.5. Отображение hook_Λ – биекция множества подвижных бусинок абака Λ в множества косых p-крюков разбиения $P(\Lambda)$. При этом если абак \overline{X} получен из Λ подвижным бусинкой a на одну позицию, то $P(\overline{X})$ – разбиение, полученное из $P(\Lambda)$ удалением крюка $\text{hook}_\Lambda(a)$.

Введенная выше терминология объясняется следующим способом изображения абаков. Пусть Λ – произвольный абак. На позиции (r,c) таблицы T, где $r \in \mathbb{Z}$ и $c = 0, \ldots, p - 1$, поставим символ “•”, если $\Lambda(pr + c) = 0$, и символ “◦”, если $\Lambda(pr + c) = 1$. По определению абак существуют два числа r_1 и r_2, такие, что в строке T стоят только ◦, если $r < r_1$, и стоят только •, если $r > r_2$. Нарисуем только строки r, где $r_1 \leq r \leq r_2$, таблички T и укажем номер какой-нибудь строки.

В связи с этой конструкцией множество $\{n \in \mathbb{Z} : n = i \pmod{p}\}$, где $0 \leq i \leq p - 1$, назовем i-м эталоном (i-th runner).

Пример. Абак $\Lambda = \{(\infty, 0) \cup \{4, 8, 9, 11, 14, 17\}\}$ и его изображение в случае $p = 7$:

- $\circ \circ \circ \circ \circ \circ \circ$

Здесь нулевая строка самая верхняя. Имеем $P(\Lambda) = (11, 9, 7, 6, 6, 3)$.

Продолжим определение ви. 2.2 функции φ на множество абаков так, чтобы $P(\varphi(\Lambda)) = \varphi(P(\Lambda))$ и $c(\Lambda) = c(\varphi(\Lambda))$ для любого абака Λ.

Пусть Λ – произвольный абак. Обозначим через a наибольшую бусинку и через b наименьший пробел этого абака.
О расширениях и правилах ветвления моделей

Положим $\varphi(\Lambda) = \Lambda$ и $e(\Lambda) = 0$ для любого несобственного абака Λ. В оставшейся части пункта будем считать, что абак Λ собственный. Следуя определению 1.3 из [8], рассмотрим множество бусинок $\{m_1, \ldots, m_N\}$ аркана Λ (в цитируемой работе оно называется “set of r-movable beads”), определенное следующим образом. Положим $m_1 = a$. Предположим, что бусинки m_1, \ldots, m_i уже определены. Если выполнено одно из условий:

1) $m_i - p$ – несобственная бусинка;
2) $m_i - p$ – пробел и не существует собственных бусинок меньших, чем $m_i - p$,
то положим $N = i$ и процесс построения окончен. В противном случае положим $m_i + 1$ равной наибольшей бусинке c аркана Λ такой, что $c \leq m_i - p$. Легко видеть, что все построенные бусинки m_1, \ldots, m_N собственные.

Постройм абак $\varphi(\Lambda)$ следующим образом. Если $m_N - p$ – несобственная бусинка, то передвинем m_N на позицию b. Иначе передвинем m_N на позицию $m_N - p$. Оставшиеся бусинки m_{N-1}, \ldots, m_1 полагаем на одну позицию по очереди, начиная с m_{N-1} и кончая m_1. Получившийся абак обозначим через $\varphi(\Lambda)$. Положим

$$e(\Lambda) = \sum P(\Lambda) - \sum P(\varphi(\Lambda)).$$

2.5. Операция \mathcal{H}_ε. В дальнейшем для произвольного абака Λ и натурального i через $b^\Lambda(i)$ будем обозначать i-ю бусинку абака Λ, считая с наибольшей, а через $b_\Lambda(i)$, если $i \leq h(\Lambda)$, i-ю собственную бусинку абака Λ, считая с наименьшей. В случае, когда абак Λ собственный, положим для краткости $b^\Lambda = b^\Lambda(1)$ и $b_\Lambda = b_\Lambda(1)$.

Пусть ε – конечный набор целых чисел. Рассмотрим следующее отображение:

$$\Lambda + \sum_{i=1}^{\lfloor \varepsilon \rfloor} (\{b^\Lambda(i) + p\varepsilon_i\} - \{b^\Lambda(i)\}).$$

(2.3)

Так как в результате мы снова хотим получить абак, то мы будем считать, что операция \mathcal{H}_ε применима к Λ тогда и только тогда, когда формула (2.3) определяет абак. В этом случае положим $\mathcal{H}_\varepsilon(\Lambda)$ равным отображению (2.3). Для любого разбиения λ положим $\mathcal{H}_\varepsilon(\lambda) = P(\mathcal{H}_\varepsilon(\Lambda))$, где $\lambda = P(\Lambda)$. Легко проверить, что такое определение корректно.

Другими словами, если \mathcal{H}_ε применима к Λ, то $\mathcal{H}_\varepsilon(\Lambda)$ получен из Λ перемещением каждой бусинки $b^\Lambda(i)$, где $1 \leq i \leq \lfloor \varepsilon \rfloor$, на позицию $b^\Lambda(i) + p\varepsilon_i$.

ОПРЕДЕЛЕНИЕ 2.6. Абак (разбиение) называется ε-большим, если он вполне распределяемый вместе с ε и к нему применима операция \mathcal{H}_ε.

Имеет место следующее очевидное утверждение.

ЛЕММА 2.7. Пусть Λ – ε-большой абак и $1 \leq i \leq \lfloor \varepsilon \rfloor$ такие, что в столбце, содержащем $b^\Lambda(i) + 1$, нет собственных бусинок аркана Λ. Тогда $\Lambda b^\Lambda(i) + 1 = \varepsilon$-большой абак и $\mathcal{H}_\varepsilon(\Lambda b^\Lambda(i) + 1) = \mathcal{H}_\varepsilon(\Lambda) b^\Lambda(i) + 1 + p\varepsilon_i$.

§ 3. Неравенства

Сформулируем следующий стандартный факт для дальнейших ссылок.

а) Если $A \to B \to C$ — точная последовательность, то
$$\dim B \leq \dim A + \dim C.$$

б) Если A, B и C — R-модули и A изоморфен подмодулю B, то
$$\dim \text{Hom}_R(C, A) \leq \dim \text{Hom}_R(C, B).$$

в) Если A, B и C — R-модули и A — гомологический образ B, то
$$\dim \text{Hom}_R(A, C) \leq \dim \text{Hom}_R(B, C).$$

3.1. Случай ограниченной высоты. Положим

$$\varepsilon(\lambda, \mu) = \begin{cases}
1, & \text{если } \lambda = \mu^B \text{ для некоторой } \mu \text{-нормальной клетки } B; \\
0, & \text{иначе,}
\end{cases}$$

$$\gamma(\mu, \lambda) = \begin{cases}
1, & \text{если } \mu = \lambda_A \text{ для некоторой } \lambda \text{-нормальной клетки } A; \\
0, & \text{иначе.}
\end{cases}$$

Лемма 3.2. Пусть $p > 2$, λ и μ — p-регулярные разбиения числа $n > 0$, $h(\lambda) < p$, $\lambda \nmid \mu$ и A — μ-хорошая клетка вычета α. Тогда
$$\dim \text{Ext}^{\frac{1}{2}}_{\Sigma}(D^\lambda, D^\mu) \leq \dim \text{Ext}^{\frac{1}{2}}_{\Sigma-1}(\text{Res}_\alpha D^\lambda, D^\mu_A) + \varepsilon(\lambda, \mu_A).$$

Доказательство. Ввиду утверждения 2.3 можно считать, что $\lambda \sim \mu$. Действуя функтором Res_α на точную последовательность $0 \to \text{rad} S^\lambda \to S^\lambda \to D^\lambda \to 0$, получаем точную последовательность

$$0 \to \text{Res}_\alpha \text{rad} S^\lambda \to \text{Res}_\alpha S^\lambda \to \text{Res}_\alpha D^\lambda \to 0.$$

Применяя $\text{Hom}_{\Sigma-1}(-, D^\mu_A)$ к последней последовательности, получаем точную последовательность

$$\text{Hom}_{\Sigma-1}(\text{Res}_\alpha S^\lambda, D^\mu_A) \to \text{Hom}_{\Sigma-1}(\text{Res}_\alpha \text{rad} S^\lambda, D^\mu_A) \to \text{Ext}^{\frac{1}{2}}_{\Sigma-1}(\text{Res}_\alpha D^\lambda, D^\mu_A).$$

В силу закона взаимности Фробениуса, теоремы E(iii) работы [4] и $\lambda \sim \mu$ имеем
$$\dim \text{Hom}_{\Sigma-1}(\text{Res}_\alpha S^\lambda, D^\mu_A) = \dim \text{Hom}_{\Sigma}(S^\lambda, \text{Ind}_\alpha D^\mu_A) = \varepsilon(\lambda, \mu_A).$$

В силу закона взаимности Фробениуса, того, что D^μ изоморфен подмодулю $\text{Ind}_\alpha D^\mu$, утверждения 3.1, б) и утверждения 2.2 получаем

$$\dim \text{Hom}_{\Sigma-1}(\text{Res}_\alpha \text{rad} S^\lambda, D^\mu_A) = \dim \text{Hom}_{\Sigma}(\text{rad} S^\lambda, \text{Ind}_\alpha D^\mu_A) \geq \dim \text{Hom}_{\Sigma}(\text{rad} S^\lambda, D^\mu) = \dim \text{Ext}^{\frac{1}{2}}_{\Sigma}(D^\lambda, D^\mu).$$

Теперь осталось применить утверждение 3.1, а) к последовательности (3.1).

Двойственным образом доказывается
Лемма 3.3. Пусть $p > 2$, λ и μ — p-регулярные разбивания числа n, $h(\lambda) < p$, $\lambda \not\equiv \mu$ и A — μ-кодашная клетка вычета α. Тогда

$$\dim \text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) \leq \dim \text{Ext}_{\Sigma_n+1}^1(\text{Ind}^\alpha D^\lambda, D^\mu) + \gamma(\lambda, \mu^A).$$

3.2. Случай произвольной высоты. При отсутствии ограничения $h(\lambda) < p$ оценку размерности пространства $\text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu)$ можно провести другим способом.

Лемма 3.4. Пусть λ и μ — различные p-регулярные разбивания числа $n > 0$ и A — λ-кодашная клетка вычета α. Тогда

$$\dim \text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) \leq \dim \text{Ext}_{\Sigma_n-1}^1(D^\lambda_A, \text{Res}_\alpha M)$$

$$+ \dim \text{Hom}_{\Sigma_n}(\text{rad Ind}^\alpha D^\lambda_A, D^\mu).$$

Доказательство. Пусть I — инъективная оболочка модуля D^μ. Так как $\text{Hom}_{\Sigma_n}(D^\lambda, I) = 0$, то $\text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) \cong \text{Hom}_{\Sigma_n}(D^\lambda, I/D^\mu)$. Пусть M — такой $K\Sigma_n$-подмодуль модуля I, что $D^\mu \subset M$ и $M/D^\mu \cong \text{soc}(I/D^\mu)$. Действуя функтором Res_α, на точную последовательность $0 \to D^\mu \to M \to M/D^\mu \to 0$ и затем применения $\text{Hom}_{\Sigma_{n-1}}(D^\lambda_A, -)$, получаем точную последовательность

$$\text{Hom}_{\Sigma_{n-1}}(D^\lambda_A, \text{Res}_\alpha M) \to \text{Hom}_{\Sigma_{n-1}}(D^\lambda_A, \text{Res}_\alpha(M/D^\mu))$$

$$\to \text{Ext}_{\Sigma_{n-1}}^1(D^\lambda_A, \text{Res}_\alpha D^\mu). \tag{3.2}$$

В силу закона взаимности Фробениуса, того, что D^λ — гомоморфный образ модуля $\text{Ind}^\alpha D^\lambda_A$, и утверждения 3.1, с) получаем

$$\dim \text{Hom}_{\Sigma_{n-1}}(D^\lambda_A, \text{Res}_\alpha(M/D^\mu)) = \dim \text{Hom}_{\Sigma_n}(\text{Ind}^\alpha D^\lambda_A, M/D^\mu)$$

$$\geq \dim \text{Hom}_{\Sigma_n}(D^\lambda, \text{soc}(I/D^\mu)) = \dim \text{Hom}_{\Sigma_n}(D^\lambda, I/D^\mu)$$

$$= \dim \text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu).$$

Применим $\text{Hom}_{\Sigma_n}(-, M)$ к точной последовательности

$$0 \to \text{rad Ind}^\alpha D^\lambda_A \to \text{Ind}^\alpha D^\lambda_A \to D^\lambda \to 0$$

и получим точную последовательность

$$\text{Hom}_{\Sigma_n}(D^\lambda, M) \to \text{Hom}_{\Sigma_n}(\text{Ind}^\alpha D^\lambda_A, M) \to \text{Hom}_{\Sigma_n}(\text{rad Ind}^\alpha D^\lambda_A, M). \tag{3.3}$$

Первый член этой последовательности равен 0, так как $\mu \not\equiv \lambda$.

Посмотрим, чему равен образ последнего морфизма последовательности (3.3). Возьмем произвольный $\varphi \in \text{Hom}_{\Sigma_n}(\text{Ind}^\alpha D^\lambda_A, M)$. Так как модуль M/D^μ полупростой, то $\text{rad Ind}^\alpha D^\lambda_A \subset \text{Ker}(\pi \circ \varphi)$, где $\pi : M \to M/D^\mu$ — естественная проекция. Отсюда $\varphi(\text{rad Ind}^\alpha D^\lambda_A) \subset D^\mu$.

Следовательно, последний член последовательности (3.3) может быть заменен на $\text{Hom}_{\Sigma_n}(\text{rad Ind}^\alpha D^\lambda_A, D^\mu)$. Отсюда и из двойственности Фробениуса

$$\dim \text{Hom}_{\Sigma_{n-1}}(D^\lambda_A, \text{Res}_\alpha M) = \dim \text{Hom}_{\Sigma_n}(\text{Ind}^\alpha D^\lambda_A, M)$$

$$\leq \dim \text{Hom}_{\Sigma_n}(\text{rad Ind}^\alpha D^\lambda_A, D^\mu).$$

Теперь осталось применить утверждение 3.1, а) к последовательности (3.2).

Двойственным образом доказывается...
Лемма 3.5. Пусть } и } - различные р-регулярные разбиения числа } и } - \lambda\text{-козерогонная клетка вычета } \alpha. \text{ Имеем }
\dim \text{Ext}_{\Sigma_n}^1(D^\lambda, D^\mu) \leq \dim \text{Ext}_{\Sigma_n+1}^1(D^{\lambda A}, \text{Ind}^\alpha D^\mu) + \dim \text{Hom}_{\Sigma_n}(\text{rad} \text{Res}_\alpha D^{\lambda A}, D^\mu).
\]

Замечание. Из теоремы 2.10 работы [2] следует, что леммы 3.4 и 3.5 остаются верными для } = } в случае } > 2 и } < }.

Оказывается, что возникающие в леммах 3.4 и 3.5 параметры
\[\dim \text{Hom}_{\Sigma_n}(\text{rad} \text{Ind}^\alpha D^{\lambda A}, D^\mu), \quad \dim \text{Hom}_{\Sigma_n}(\text{rad} \text{Res}_\alpha D^{\lambda A}, D^\mu)\]
иногда допускают оценку сверху.

Лемма 3.6. Пусть } - р-регулярное разбиение числа } и } = K\Sigma_n\text{-модуль такой, что } \text{Ext}_{\Sigma_n}^1(S^\lambda, \text{rad} M) = 0, \text{Hom}_{\Sigma_n}(S^\lambda, \text{rad} M) = 0 \text{ и } \text{head}(M) \cong D^\lambda. \text{ Тогда } M = K\Sigma_n\text{-гомоморфный образ модуля } S^\lambda.

Доказательство. Применяя \text{Hom}_{\Sigma_n}(S^\lambda, -) \text{ к точной последовательности } 0 \to \text{rad} M \to M \to D^\lambda \to 0, \text{ получаем точную последовательность }
\[0 = \text{Hom}_{\Sigma_n}(S^\lambda, \text{rad} M) \to \text{Hom}_{\Sigma_n}(S^\lambda, M) \to \text{Hom}_{\Sigma_n}(S^\lambda, D^\lambda) \to \text{Ext}_{\Sigma_n}^1(S^\lambda, \text{rad} M) = 0.
\]
Отсюда \text{Hom}_{\Sigma_n}(S^\lambda, M) \cong \text{Hom}_{\Sigma_n}(S^\lambda, D^\lambda) \cong K \text{ и существует ненулевой гомоморфизм } \varphi: S^\lambda \to M. \text{ Так как } \text{Hom}_{\Sigma_n}(S^\lambda, \text{rad} M) = 0, \text{ то } \text{Im} \varphi \not\subseteq \text{rad} M \text{ и, следовательно, } \text{Im} \varphi = M.

Лемма 3.7. Пусть } и } - различные р-регулярные разбиения числа } > 0 \text{ такие, что } \text{Ext}_{\Sigma_n}^1(S^\lambda, D^\mu) = 0. \text{ Предположим, что существует } \lambda\text{-хорошая клетка } A \text{ и } \mu\text{-хорошая клетка } B \text{ вычета } \alpha \text{ и что } A - единственная } \lambda\text{-нормальная клетка вычета } \alpha \text{ и } \lambda A \neq \mu B. \text{ Тогда } \dim \text{Hom}_{\Sigma_n}(\text{rad} \text{Ind}^\alpha D^{\lambda A}, D^\mu) \leq \varepsilon(\lambda, \mu, B).

Доказательство. Ввиду утверждения 2.3 можно считать, что } \sim \mu. \text{ Положим для краткости } n = \dim \text{Hom}_{\Sigma_n}^\alpha(\text{rad} \text{Ind}^\alpha D^{\lambda A}, D^\mu). \text{ Пусть } V - K\Sigma_n\text{-подмодуль модуля } \text{rad} \text{Ind}^\alpha D^{\lambda A} \text{ такой, что } (\text{rad} \text{Ind}^\alpha D^{\lambda A})/V \cong \bigoplus n D^\mu. \text{ Положим } M = (\text{Ind}^\alpha D^{\lambda A})/V. \text{ Действуя функтором } \text{Res}_\alpha \text{ на точную последовательность } 0 \to \text{rad} M \to M \to D^\lambda \to 0 \text{ и учитывая эквивалентность } \text{Res}_\alpha D^\lambda \cong D^{\lambda A}, \text{ следующую из того, что } A - единственная } \lambda\text{-нормальная клетка вычета } \alpha, \text{ получаем точную последовательность }
\[0 \to \text{Res}_\alpha \text{rad} M \to \text{Res}_\alpha M \xrightarrow{\pi} D^{\lambda A} \to 0. \quad (3.4)
\]
В силу двойственности Фробениуса имеем
\[0 \neq \text{Hom}_{\Sigma_n}(\text{Ind}^\alpha D^{\lambda A}, M) \cong \text{Hom}_{\Sigma_n-1}(D^{\lambda A}, \text{Res}_\alpha M).
\]
Пусть \(\chi \) - произвольный ненулевой элемент последнего пространства. Имеем

\[
\text{soc} \text{Res}_\alpha \text{rad} M \cong \text{soc} \text{Res}_\alpha \left(\bigoplus n D^\mu \right) \cong \text{soc} \left(\bigoplus n \text{Res}_\alpha D^\mu \right) \\
\cong \bigoplus n \text{soc} \text{Res}_\alpha D^\mu \cong \bigoplus n D^{\mu B}.
\]

В силу условия \(\lambda_A \neq \mu_B \) мы получаем отсюда, что \(\text{Im} \chi \cap \text{Res}_\alpha \text{rad} M = 0 \). Следовательно, \(\chi \) расщепляет эпиморфизм \(\pi \) из последовательности (3.4) и

\[
\text{Res}_\alpha M \cong D^{\lambda \Lambda} \oplus \text{Res}_\alpha \text{rad} M.
\]

Так как модуль \(D^{\mu B} \) - гомоморфный образ модуля \(\text{Res}_\alpha D^\mu \), то \(\bigoplus n D^{\mu B} \) - гомоморфный образ модуля \(\text{Res}_\alpha \text{rad} M \), который по формуле (3.5) - гомоморфный образ модуля \(\text{Res}_\alpha M \).

В силу \(\text{head}(M) \cong D^\lambda \) и \(\text{rad} M \cong \bigoplus n D^\mu \) к модулю \(M \) применима лемма 3.6. Следовательно, \(M \) - гомоморфный образ модуля \(S^\lambda \). Отсюда \(\text{Res}_\alpha M \) - гомоморфный образ модуля \(\text{Res}_\alpha S^\lambda \). В результате получаем, что \(\bigoplus n D^{\mu B} \) - гомоморфный образ модуля \(\text{Res}_\alpha S^\lambda \).

В силу утверждения 3.1, с), закона двойственности Фробениуса, теоремы E(iii) работы [4] и \(\lambda \sim \mu \) получаем

\[
n = \dim \text{Hom}_{\Sigma_{n-1}} \left(\bigoplus n D^{\mu B}, D^{\mu B} \right) \leq \dim \text{Hom}_{\Sigma_{n}} (\text{Res}_\alpha S^\lambda, D^{\mu B}) \\
= \dim \text{Hom}_{\Sigma_{n}} (S^\lambda, \text{Ind}^\alpha D^{\mu B}) = \varepsilon(\lambda, \mu_B).
\]

Двойственным образом доказывается

Лемма 3.8. Пусть \(\lambda \) и \(\mu \) - различные \(p \)-регулярные разбиения числа \(n \) такие, что \(\text{Ext}_{\Sigma_{n}}^1 (S^\lambda, D^{\mu B}) = 0 \). Предположим, что существуют \(\lambda \)-когоморфная клетка \(A \) и \(\mu \)-когоморфная клетка \(B \) вычета \(\alpha \) и что \(A \) - единственная \(\lambda \)-когоморфная клетка вычета \(\alpha \) и \(\lambda^A \neq \mu^B \). Тогда

\[
\dim \text{Hom}_{\Sigma_{n}} (\text{rad} \text{Res}_\alpha D^{\lambda \Lambda}, D^{\mu B}) \leq \gamma(\lambda, \mu_B).
\]

3.3. Фильтрация и самодвойственность. До конца текущего параграфа будем использовать обозначения § 2 работы [4].

Лемма 3.9. Фиксируем \(\lambda \in X^+(n) \) и вычет \(\alpha \in \mathbb{Z}_p \). Пусть \(s_1 < \cdots < s_k \) - множество всех \(j \) таких, что \(j \) когоморфен для \(\lambda \) и \(\text{res}(j, \lambda_j + 1) = \alpha \). Предположим, что \(\gamma \in X^+(n) \) такой, что

\[
[\text{Tr}^\alpha L_n(\lambda) : L_n(\gamma)] > 2 \sum_{i=2}^{k} [\Delta_n(\lambda + \varepsilon_{s_i}) : L_n(\gamma)].
\]

Тогда \(\gamma = \lambda + \varepsilon_{s_1} \).
Доказательство. Положим \(N = \text{Tr}^\alpha L_n(\lambda) \). По теореме С из [4] существует фильтрация \(0 = N_0 \subset N_1 \subset \cdots \subset N_k = N \) такая, что для \(1 \leq j \leq k \) модуль \(N_i/N_{i-1} \) - нулевой гомоморфный образ модуля \(\Delta_i(\lambda + \varepsilon_{a_i}) \).

Предположим, что \(\gamma \neq \lambda + \varepsilon_{a_1} \). Тогда \([N_1 : L_n(\gamma)] = [\text{rad} N_1 : L_n(\gamma)] \). Так как модуль \(N \) контравариантно самодвойственный, то существует подмодуль \(M \subset N \), контравариантно двойственный к модулю \(N/\text{rad} N_1 \). Пределложение \(N_i \subset M \) (на самом деле даже \(\text{rad} N_1 \subset M \)) приводит к противоречию следующим образом:

\[
[N : L_n(\gamma)] = [N/\text{rad} N_1 : L_n(\gamma)] + [\text{rad} N_1 : L_n(\gamma)] \leq 2[M : L_n(\gamma)] = 2[N/\text{rad} N_1 : L_n(\gamma)] \leq 2 \sum_{i=2}^k [\Delta_i(\lambda + \varepsilon_{a_i}) : L_n(\gamma)].
\]

Теперь по второй теореме об изоморфизме имеем \(0 \neq N_1 + M/M \cong N_1/\text{rad} N_1 \cap M \), откуда следует \([N_1 + M/M : L_n(\lambda + \varepsilon_{a_1})] = 1 \). Напомним, что \([N : L_n(\lambda + \varepsilon_{a_1})] = 1 \) в силу теоремы B (iv) из [4] и

\[
[\text{rad} N_1 : L_n(\lambda + \varepsilon_{a_1})] \leq [\text{rad} \Delta_i(\lambda + \varepsilon_{a_1}) : L_n(\lambda + \varepsilon_{a_1})] = 0.
\]

Получаем противоречие:

\[
[M : L_n(\lambda + \varepsilon_{a_1})] = [N : L_n(\lambda + \varepsilon_{a_1})] - [\text{rad} N_1 : L_n(\lambda + \varepsilon_{a_1})] = 1,
\]

\[
[N_1 + M/M : L_n(\lambda + \varepsilon_{a_1})] \leq [N : L_n(\lambda + \varepsilon_{a_1})] - [M : L_n(\lambda + \varepsilon_{a_1})] = 0.
\]

Лемма 3.10. Фиксируем \(r \)-регулярное разбиение \(\lambda \vdash r \) и вычет \(\alpha \in \mathbb{Z}_p \).

Пусть \(B_1, \ldots, B_k \) - все \(\lambda \)-конормальные клетки вычета \(\alpha \), перечисленные сверху вниз. Предположим, что для некоторого \(\gamma \vdash r + 1 \) выполнено

\[
[\text{Ind}^\alpha D^\lambda : D^\gamma] > 2 \sum_{i=2}^k [S_{B_i}^\lambda : D^\gamma].
\]

Тогда \(\gamma = \lambda^{B_1} \).

Доказательство. Выберем \(n > r \). В силу теоремы 4.16 из [11] имеем

\[
[\text{Ind}^\alpha D^\lambda : D^\gamma] = [\text{Tr}^\alpha L_n(\lambda^t) : L_n(\gamma^t)]
\]

и в силу леммы (6.6b) из [12] имеем

\[
[S_{B_i}^\lambda : D^\gamma] = [\Delta_i((\lambda^{B_i})^t) : L_n(\gamma^t)],
\]

где \(\lambda^t, \gamma^t, (\lambda^{B_i})^t \) надо понимать как элементы из \(X^+(n) \). Тогда требуемый результат следует из леммы 3.9.

Замечание. Высказываем предположение, что результат для функтора \(\text{Res}^\alpha \), двойственной леммы 3.10, также справедлив и что он следует (при помощи теорем C', B'(iv) работы [4]) из леммы для функтора \(\text{Tr}^\alpha \), двойственной лемме 3.9, леммы 7.4 из [4] при подходящем выборе \(n \) и теоремы 2.11 (v) из [13].
§4. Вполне расщепляемые разбиения

4.1. Общая конструкция. Выберем некоторое множество X, каждый элемент которого имеет вид (λ, μ), где λ и $\mu = p$-регулярные разбиения такие, что $h(\lambda) < p$, $\lambda \not\preceq \mu$, $\lambda \sim \mu$ и существует не более чем одна λ-нормальная клетка каждого вычета.

Определем отображение $U : X \rightarrow \mathbb{Z}'$ по индукции следующим образом. Положим $U(\emptyset, \emptyset) = 0$. Пусть теперь $(\lambda, \mu) -$ пара непустых разбиений из X. Для каждой μ-хорошей клетки A положим $m_A(\lambda, \mu)$ равным следующему числу:

1) $\varepsilon(\lambda, \mu_A)$, если не существует λ-хороших клеток вычета $\text{res} A$;
2) $U(\lambda_B, \mu_A) + \varepsilon(\lambda, \mu_A)$, если существует λ-хорошая клетка B вычета $\text{res} A$ и $(\lambda_B, \mu_A) \notin X$;
3) $+\infty$, если существует λ-хорошая клетка B вычета $\text{res} A$ и $(\lambda_B, \mu_A) \notin X$.

Положим $U(\lambda, \mu) = \min\left\{m_A(\lambda, \mu) : A - \mu$-хорошая клетка $\right\}$.

Лемма 4.1. Пусть $p > 2$ и $(\lambda, \mu) \in X$. Тогда $\dim \text{Ext}^1_{\mathbb{Z}}(D^\lambda, D^\mu) \leq U(\lambda, \mu)$, где $\lambda, \mu \vdash n$.

Доказательство получается индукцией по n с использованием леммы 3.2.

4.2. Случай вполне расщепляемых разбиений.

Определение [6; 0.1]. Неприводимый $K\Sigma_n$-модуль D^λ называется вполне расщепляемым (completely splittable) тогда и только тогда, когда ограничение $D^\lambda|_{\Sigma_m}$ на любую подгруппу Юнга $\Sigma_m \subset \Sigma_n$ подупустим.

Для разбиения λ положим $\chi(\lambda) = 0$, если $\lambda = \emptyset$, и $\chi(\lambda) = \lambda_1 - \lambda_{h(\lambda)} + h(\lambda)$ иначе. Точное описание вполне расщепляемых модулей дает следующая

Теорема [6; 2.1]. Модуль D^λ вполне расщепляем тогда и только тогда, когда $\chi(\lambda) \leq p$.

Разбиение λ любой его абак Λ такие, что модуль D^λ вполне расщепляем, будем также называть вполне расщепляемыми.

Первая из формул (2.1) показывает, что для любого собственного абака

$$\chi(P(\Lambda)) = b^\Lambda - b_\Lambda + 1. \quad (4.1)$$

Из этой формулы следует, что собственный абак Λ вполне расщепляем тогда и только тогда, когда $b_\Lambda > b^\Lambda - p$.

Определение 4.2. $(-1, 0^n, 1)$-большой абак (разбиение), где $n \geq 0$, будем называть просто большим. Для любого большого абака (разбиения) высоты h положим $\bar{\Lambda} = \mathcal{H}_{(-1, 0^{h-2}, 1)}(\Lambda)$.

Легко видеть, что абак Λ большой тогда и только тогда, когда он собственный, $b^\Lambda > b_\Lambda > b^\Lambda - p$ и b^Λ - поднимающая бусянка.

Пусть γ - произвольное разбиение и C - его удельная клетка. Тогда

$$\sigma_i(\gamma_C) = \begin{cases} \sigma_i(\gamma), & \text{если } i < r(C); \\ \sigma_i(\gamma) - 1, & \text{если } i \geq r(C). \end{cases} \quad (4.2)$$
Лемма 4.3. Справедливо следующее.

а) Если λ — вполне расщепляемое разбиение, μ — произвольное разбиение,
A = μ-удалаемая клетка, B = λ-хорошая клетка, res A = res B и λ ⋄ μ,
то λB ⋄ μA.

б) Если ν — разбиение, не содержащее различных удалаемых клеток одно-
кого вычета, μ — произвольное разбиение, A = μ-удалаемая клетка,
B = ν-хорошая клетка, res A = res B и ν ⋄ μ, то νB ⋄ μA.

Доказательство. Положим для краткости x = r(A) и у = r(B).

а) Предположим, что λB ⋄ μA. Из того, что B — λ-нормальная клетка, получае-
м у₁ = λ₁ + y < p. Из формулы (4.2) следует, что σ₁(λ₁) ≥ σ₁(μ₁) при i < x и i ≥ y.
Если σ₁(λ₁) ≥ σ₁(μ₁) выполнено и для каждого i такого, что x ≤ i < y, то мы полу-
чим λ ⋄ μ вопросу условию. Поэтому будем считать, что существует j такое, что
x ≤ j < y, σ₁(λ₁) < σ₁(μ₁) и σ₁(λ₁) ≥ σ₁(μ₁) для всех i < j. Так как (λB)₁ ≥ (μA)₁,
то λ₁ ≥ μ₁ − 1 ≥ μx − x. Отсюда получаем

p > λ₁ − λy + y ≥ (μx − x) − (λy − y) ≥ (μj − j) − (λy − y).

Докажем, что правая часть последнего неравенства больше 0. Предположим про-
тивное. Из неравенств σ₁(λB)₁ ≥ σ₁(μA), σ₁(λ₁) < σ₁(μ₁) и формулы (4.2) получаем,
что σ₁(λ₁) = σ₁(μ₁) − 1, или в другой форме λ₁ + μ₁ − 1 = 0. Отсюда

(σ₁−₁(λ₁) − σ₁−₁(μ₁)) + (λ₁ − λy + 1) + (y − j) ≤ 0.

Это противоречие, так как выражение в первой паре скобок неотрицательно, а
в других двух положительно. Таким образом, мы получили p > (μx − x) −
(λy − y) > 0 и res A ≠ res B.

б) Предположим, что νB ⋄ μA. Из формулы (4.2) следует, что σ₁(ν₁) ≥ σ₁(μ₁)
при i < x и i ≥ y. Если σ₁(ν₁) ≥ σ₁(μ₁) выполнено и для каждого i такого, что
x ≤ i < y, то мы получим ν ⋄ μ вопросу условию ν ⋄ μ. Поэтому будем считать,
что существует j такое, что x ≤ j < y, σ₁(ν₁) < σ₁(μ₁) и σ₁(ν₁) ≥ σ₁(μ₁) для всех
i < j. Так как ν ⋄ μ, то σ₁(ν₁) = σ₁(μ₁) для всех i < j и, следовательно, ν₁ = μ₁ для
всех 0 ≤ i < j. Как и в п. а), имеем σ₁(ν₁) = σ₁(μ₁) − 1, откуда ν₁ = μ₁ = μj − 1.

Если x < j, то A и B — различные ν-удалаемые клетки одного вычета. Противо-
речие. Поэтому x = j и A — ν-удаляемая клетка. По определению нормальных
клеток существует ν-удаляемая клетка вычета res B, расположенная строго меж-
ду B и A. Это опять противоречие.

Применим конструкцию, описанную в п. 4.1, к множеству

X = \{ (λ, μ) : λ вполне расщепляемо, μ p-регулярно, λ ⋄ μ, λ ∼ μ \},

которое мы зафиксируем до конца параграфа. Заметим, что X = ∅ в случае p = 2,
так как в этом случае следующие условия не выполняются одновременно: λ вполне
расщепляемо, λ ⋄ μ, λ ∼ μ.

Лемма 4.4. Пусть (λ, μ) ∈ X. Тогда U(λ, μ) = 0, за исключением случая
μ = λ, в котором мы имеем U(λ, λ) ⋄ 1.
Доказательство. Индукция по $n = \sum \lambda$. В случае $n = 0$ имеем $U(\lambda, \mu) = 0$ по определению.
Пусть теперь $n > 0$ и теорема верна для разбиений чисел, меньших чем n. Выберем некоторые абаки M и Λ одинакового Themes такую, что $\mu = P(M)$ и $\lambda = P(\Lambda)$. Пусть A - произвольная μ-хорошая клетка. Она существует в силу неустойчивости p-регулярности μ. Обозначим через a бусинку абака M, соответствующую клетке A.
Рассмотрим сначала случай $\varepsilon(\lambda, \mu_A) = 1$. Тогда $\Lambda = (M_A)^c$ для некоторого коморального пробела с абака M_a. Так как $\lambda \sim \mu$ и $\lambda \not\geq \mu$, то и ε лежит в одном столбце при этом столбце, причём в нижем, чем c. Имеем $M = (\Lambda_c)^n$. Отсюда мы легко получаем $c = b_\lambda, a = b_\lambda + p, b_{\lambda} + 1 = b_\lambda + p$ (т.е. $\chi(\lambda) = p$) и $M = \Lambda$ (т.е. $\mu = \lambda$). Заметим, что в данном случае единственной бусинкой абака A, лежащей в том же столбце, что и a, является бусинка A, которая не нормальна. Поэтому не существует λ-хороших клеток вычета A и $U(\lambda, \mu) \leq m_A(\lambda, \mu) = \varepsilon(\lambda, \mu_A) = 1$.
Будем теперь считать, что $\varepsilon(\lambda, \mu_A) = 0$. Если не существует λ-хороших клеток вычета A, то $U(\lambda, \mu) = m_A(\lambda, \mu) = 0$. Поэтому будем считать, что существует λ-хорошая клетка Y вычета A. Примем b, a, b, a, получим $\lambda, \mu_A, \lambda, \mu_A \in X$. Определяем $U(\lambda, \mu) \leq m_A(\lambda, \mu) = U(\lambda, \mu_A)$. Поэтому далее мы будем рассматривать случай $U(\lambda_B, \mu_A) > 0$.
Пусть b - бусинка абака A, соответствующая клетке B. В силу индуктивного предложения получаем $\lambda_B = \lambda_B, M_a = \lambda_b, U(\lambda_B, \mu_A) \leq 1$. Отсюда $s \leq b^{A_B} - p$, где s - нижний пробел абака A_b. Следовательно, $b \neq s$, так как иначе мы получили бы $b^{A_B} - b = b^{A_B} - s \geq p$, что противоречит вполне расширяемости абака A.
Напомним, что a и b - хоронющие пробелы абаков M_a и Λ_b соответственно, так как a и b - хорошие бусинки абаков M и Λ соответственно. Имеем $b^{A_B} (i) + 1 < b_{\lambda} + p$, для $1 \leq i \leq h(\Lambda)$, так как $b_{\lambda} + p$ - не хоронющеный пробел абака A_b. Теперь к абаку A_b можно применить теорему 2.7 и получим $\lambda = M_a^{h_{\lambda}}$, где $\varepsilon = (-1, \sigma^{-1}(\lambda) - 1, 1)$. Так как a и b лежат в одном столбце и единственном хоронющенном пробеле абака A_a, который равен λ_b, лежащем в том же столбце, что и b, является пробел $b + 1 + p_\lambda$, $a = b + 1 + p_\lambda$.

4.3. Точная формула. Следующая лемма показывает, что определение 4.2 наистающей работы общего разбиения и преобразований $\lambda \mapsto \lambda$ эквивалентно определению 4 из [5].

Лемма 4.5. Разбиение λ большее того и только того, когда λ вполне расширяется выше более единицм и $h_{1,1}(\lambda) \geq p$. В этом случае $[\lambda]$ получено из $[\lambda]$ перемещением всех клеток p-кульса c основанием $(1, \lambda_1 + h(\lambda) - p)$ из последней строки в первую.

Доказательство. Первая часть следует из формулы $h_{1,1}(\lambda) = b^{A} - c$, где A - свойственный абак и c - его нижний пробел.

Предположим теперь, что λ - большое разбиение, и для краткости положим $h = h(\lambda)$ и $j = \lambda_1 + h - p$. Так как $1 \leq j \leq \lambda_1$, то клетка $(1, j)$ принадлежит диаграмме $[\lambda]$. Имеем $\lambda_j \leq h$. Если бы $\lambda_j < h$, то мы бы получили $\lambda_j < j$ и $\chi(\lambda) > p$. Отсюда $\lambda_j = h$ и $h_{1,2}(\lambda) = \lambda_j - j + \lambda_j = p$.

Так как $b^{A} - p < b_a$ и $b^{A} - b_a + p$, то для любой бусинки d абака A такой, что $b_a < d < b^{A}$, количества пробелов, предшествующих d в абаках A и Λ, совпадают.
и количества бусинок, следующих за \(d \) в абаках \(\Lambda \) и \(\tilde{\Lambda} \), тоже совпадают. Бусинки \(b^\lambda_1 - p \) и \(b\lambda_1 + p \) — соответственно наименьшая и наибольшая бусинка абака \(\Lambda \). Первой из них в абаке \(\Lambda \) превышает \(b^\lambda_1 - p - c = \lambda_1 - 1 + h - p \) пробелов, а второй превышает \(b\lambda_1 + p - c - (h - 1) = \lambda_1 - h + p + 1 \) пробелов (\(c \) — наименьший пробел абака \(\Lambda \)). Таким образом, \(\lambda = (\lambda_1 - h + p + 1, \lambda_2, \ldots, \lambda_h - 1, \lambda_1 + h - p - 1) \), а последнее разбиение есть то разбиение, чья диаграмма получается из \([\lambda] \) перемещением всех клеток \(\rho \)-крюка с основанием \((1, j)\) из последней строки в первую.

Теорема 4.6 [5; теорема 6]. Пусть \(p > 2 \) и \(\lambda \), \(\mu \) — \(p \)-регулярные разбиения числа \(n \) такие, что модуль \(D^\lambda \) вполне расщепляемый и \(\lambda \nmid \mu \). Тогда

\[
\text{Ext}^1_{\Sigma_n}(D^\lambda, D^\mu) \cong \begin{cases}
K, & \text{если } \mu = \tilde{\lambda}; \\
0, & \text{иначе.}
\end{cases}
\]

Доказательство. Равенство \(\text{Ext}^1_{\Sigma_n}(D^\lambda, D^\mu) = 0 \) в случае, когда \(\lambda \) — не большое разбиение или \(\mu \nmid \lambda \), следует из леммы 4.4 и утверждения 2.3.

Предположим теперь, что \(\mu = \lambda \). По лемме 4.5 получаем, что длина крюка \(h_{i,j}(\lambda) \), где \(j = \lambda_1 + h(\lambda) - p \) и \(1 \leq i \leq \lambda_j = h(\lambda) \), делится на \(p \) только при \(i = 1 \). Так как \(h(\lambda) > 1 \), то по гипотезе Картера, доказанной в [14], модуль \(S^\lambda \) не прост. По лемме 4.4 единственным верхним композиционным фактором нецелевого модуля \(\text{Rad} S^\lambda \) является \(D^\lambda \). Отсюда и из второго утверждения леммы 4.4 получаем \(\dim \text{Ext}^1_{\Sigma_n}(D^\lambda, D^\lambda) = 1 \).

4.4. Почти вполне расщепляемые разбения.

Определение 4.7. Абак (разбиение) \(M \) называется **почти вполне расщепляемым**, если \(M = \lambda \) для некоторого вполне расщепляемого \(\lambda \), который называется **прообразом** \(M \).

Важно заметить, что прообраз \(\lambda \) однозначно восстанавливается по \(M \). Действительно, положим \(a = b^M \). Если \(M \) — вполне расщепляемый абак, то обозначим через \(b \) его наибольшую несобственную бусинку, а если \(M \) — не вполне расщепляемый абак, то положим \(b = b^M \). Тогда \(\lambda \) получается из \(M \) поднятием \(a \) и опусканием \(b \) на одну позицию.

Модуль \(D^\lambda \), где \(\lambda \) — почти вполне расщепляемое разбиение, назовем также почти вполне расщепляемым.

Многие абаки, встречающиеся в этой статье, удобно задавать при помощи следующей конструкции. Воспоми, \(x \in \mathbb{Z} \) и \(S \subset [0, p - 1] \). Пусть \(x_0, \ldots, x_i, \ldots \) — все элементы множества \(\{ n \in \mathbb{Z} : n \geq x, \text{rem}(n, p) \in S \} \), перечисленные в порядке возрастания. Для \(i \geq 0 \) положим \(\langle x, S, i \rangle = \{ x_k : i \leq k < i + |S| \} \). Заметим, что в случае \(i > 0 \) множество \(\langle x, S, i - 1 \rangle \) получено из \(\langle x, S, i \rangle \) заменой наибольшего элемента \(a \) последнего множества на \(a - p \) (поднятие \(a \) на одну позицию).

Пример. Пусть \(p = 7 \) и \(S = \{1, 3, 4, 6\} \). Имеем \(\langle 9, S, 5 \rangle = \{18, 20, 22, 24\} \) и \(\langle 9, S, 6 \rangle = \{20, 22, 24, 25\} \).

Определение 4.8. Пусть \(h, i, x \) — целые числа такие, что \(0 < i \leq h < p \) и \(x \geq 0 \). Положим \(\lambda^{(h, i, x)} = (-\infty, 0) \cup [0, i, \infty \cup [i, h]) \) и \(\lambda^{(h, i, x)} = P(\lambda^{(h, i, x)}) \).

Легко видеть, что разбиение \(\lambda^{(h, i, x)} \) имеет \(p \)-вес \(x \) и, следовательно, является разбиением числа \(px \). Кроме того, если \(x > 0 \), то высота \(\lambda^{(h, i, x)} \) равна \(h \),
О расширениях и правилах ветвления модулей

\[\text{core}(\lambda^{(h, i, x)}) = \emptyset, \text{ наименьшая удаляемая клетка разбиения } \lambda^{(h, i, x)} - \text{ его единственная нормальная клетка и она имеет вычет } -\pi. \] Легко видеть, что равенства
\[\lambda^{(h, i, 0)} = \emptyset \text{ и } \lambda^{(h, i, x)} = \lambda^{(h, x, x)} \text{ (следующее из } \lambda^{(h, i, x)} = \lambda^{(h, x, x)} \text{ при } x < i \) исчерпывают все случаи совпадений разбиений } \lambda^{(h, i, x)}. \] Для краткости положим \[\lambda^{(h, x)} = \lambda^{(H, H, x)}. \] В явном виде \[\lambda^{(h, i, x)} \text{ записывается следующим образом:} \]
\[\Lambda^{(h, i, x)} = (-\infty, 0) \cup [(q + 1)p, (q + 1)p + r) \cup [qp + r, qp + r + i) \cup [i, h), \]
где \(q = \text{quo}(x, i) \) и \(r = \text{rem}(x, i). \)

Замечание. В работе [15] разбиения \(\lambda^{(H, x)} \) называются минимальными.

Утверждение 4.9. Если \(\lambda - \text{ вполне расщепляемое разбиение, то} \)
\[\chi(\text{core}(\lambda)) < p. \]

Доказательство. Следует из формулы (4.1) и того, что разбиение \(\text{core}(\lambda) \) вполне расщепляемое.

Лемма 4.10. Пусть \(\lambda - \text{ вполне расщепляемое разбиение, } \chi(\lambda) = p \) и вычет любой \(\text{core}(\lambda) \)-нормальной клетки равен вычету самой нижней \(\lambda \)-удаляемой клетки. Тогда \(\lambda = \lambda^{(H, x)}, \) где \(1 < H < p \) и \(H \neq x. \)

Доказательство. Предположим, что \(\text{core}(\lambda) \) - непустое разбиение. В силу утверждения 4.9 получаем, что \(\chi(\text{core}(\lambda)) < p \) и \(\text{core}(\lambda) \) содержит только одну удаляемую клетку. Отсюда \(\text{core}(\lambda) = P\left((-\infty, 0] \cup [b, a]\right), \) где \(0 < b < a < p. \) Следовательно, \(\lambda = P\left((-\infty, 0] \cup [(q + 1)p + b, (q + 1)p + r) \cup [qp + r, qp + a]\right) \) для \(q \) и \(r \) таких, что \(q \geq 0 \) и \(b \leq r < a. \)

Случай \(r = b \) невозможно потому, что мы получили бы противоречие \(\chi(\lambda) = \chi(\text{core}(\lambda)) < p. \) Случай \(r > b \) тоже невозможно. Действительно, тогда наименьшая начальная бусинка abaka \((-\infty, 0] \cup [(q + 1)p + b, (q + 1)p + r) \cup [qp + r, qp + a], \) равная \(qp + r, \) и нормальная бусинка b abaka \((-\infty, 0] \cup [b, a], \) находились бы в разных столбцах. Приходим к противоречию.

Теперь требуемое утверждение следует из \(\text{core}(\lambda) = \emptyset \) и \(\chi(\lambda) = p. \)

Утверждение 4.11. Пусть \(\lambda - \text{ непустое разбиение и } \Lambda - \text{ его abак. Тогда} \)
\[\lambda - (1^{h(\lambda)}) = P(\Lambda'), \] где abaka \(\Lambda' \) получен из \(\Lambda \) заменой его наименьшего пробела на бусинку.

Следствие 4.12. Пусть \(\lambda \) и \(\mu - \text{ разбиения такие, что } h(\lambda) = h(\mu) \) и \(\text{core}(\lambda) = \text{core}(\mu). \) Тогда \(\text{core}(\lambda - (1^{h(\lambda)})) = \text{core}(\mu - (1^{h(\mu)})). \)

Лемма 4.13. Пусть \(\chi(\lambda) = p, \) \(\text{core}(\lambda) = \text{core}(\mu) = \emptyset, \) \(h(\mu) \leq h(\lambda) < p \) и вычет любой \(\mu \)-нормальной клетки равен вычету самой нижней \(\lambda \)-удаляемой клетки. Тогда \(h(\mu) < h(\lambda). \)

Доказательство. Предположим, что \(h(\mu) = h(\lambda). \) Положим \(h = h(\lambda) \) и \(n = \sum \lambda. \)

Случай \(n > p. \) Имеем \(\lambda = P(\Lambda^{(h, x)}). \) Положим \(\alpha = \text{res}(h, \lambda h), \Lambda = \lambda - (1^{h}) \) и \(\pi = \mu - (1^{h}). \) В рассматриваемом случае \(x > 1. \) Следовательно, \(\lambda h > 1 \) и \(\chi(\Lambda) = p. \) По следствию 5.3 (см. §5) для любой \(\text{core}(\pi) \)-нормальной клетки существует \(\pi \)-нормальная клетка того же вычета. Однако все \(\pi \)-нормальные клетки имеют вычет \(\alpha - 1, \) равный вычету самой нижней \(\lambda \)-удаляемой клетки \((h, \lambda h - 1). \)
Так как \(\text{core}(p) = \text{core}(\lambda) \) по следствию 4.12, то вычет любой \(\text{core}(\lambda) \)-нормальной клетки равен вычету самой нижней \(\lambda \)-удалляемой клетки. По лемме 4.10 получаем \(\text{core}(\lambda) = \emptyset \). Противоречие, так как \(\lambda \)-разбиение числа \(n - h \), не делящегося на \(p \).

Случай \(n = p \) сводится к предыдущему рассмотрению пары разбиений \(\lambda = \lambda + (p^h) \) и \(\bar{\lambda} = \mu + (p^h) \).

\(\text{§ 5. Удаление локально наивысших } p \text{-крупок} \)

ОПРЕДЕЛЕНИЕ 5.1. Пусть \(u \) — подписывающая бусинка абака \(\Lambda \). Соответствующий ей косой \(p \)-крук называется локально наивысшим, если \(u + 1 \) не является подписывающей бусинкой.

ЛЕММА 5.2. Пусть \(\lambda \)-разбиение и \(\lambda \)-разбиение, полученное из \(\lambda \) удалением его локально наивысшего косого \(p \)-крупа \(R \). Тогда для любого \(\alpha \in \mathbb{Z}_p \), количество \(\lambda \)-нормальных клеток вычета \(\alpha \) не превосходит количества \(\lambda \)-нормальных клеток того же вычета.

ДОКАЗАТЕЛЬСТВО. Пусть \(\Lambda \) и \(\lambda \) — абаки разбиений \(\lambda \) и \(\lambda \) соответственно, имеющие вычеты \(p \)-вычета 1 – \(\alpha \), и \(\text{hook}_{\lambda^{-1}}(R) = pi + j \), где \(0 \leq j < p \).

В силу утверждения 2.4 и второй из формул (2.1) теорема будет доказана, если мы определим вложение \(\iota \) множеств нормальных бусинок первого столбца абака \(\lambda \) в множество нормальных бусинок первого столбца абака \(\Lambda \). Ясно, что в случае \(j > 1 \) в качестве \(\iota \) можно взять тождественное отображение. Поэтому будем считать, что \(0 \leq j \leq 1 \).

Рассмотрим сначала случай \(j = 0 \). Пусть \(a = px + 1 \) — нормальная бусинка абака \(\lambda \).

Если \(x > i \), то очевидно, что \(a \) — нормальная бусинка абака \(\Lambda \). Положим в этом случае \(\iota(a) = a \).

Если \(x = i \), то \(a = p - \text{бусинка абака } \lambda \), так как иначе в абаке \(\Lambda \) бусинку \(a \) можно переместить на одну позицию вверх, что противоречит тому, что удаленный косой \(p \)-крук является локально наивысшим. Возьмем произвольное \(s > i - 1 \). Имеем

\[
\sum_{i-1 < k \leq s} (\Lambda(pk + 1) - \Lambda(pk)) = \sum_{i < k \leq s} (\Lambda(pk + 1) - \Lambda(pk)) = \sum_{i < k \leq s} (\lambda(pk + 1) - \lambda(pk)) \geq 0.
\]

Теперь понятно, что \(a = p - \text{нормальная бусинка абака } \lambda \). Положим \(\iota(a) = a - p \).

Случай \(x = i - 1 \) невозможен, так как мы получили бы, что бусинка \(a \) не начальная в абаке \(\lambda \).

Пусть, наконец, \(x < i - 1 \). Для любого \(s > x \) имеем

\[
\sum_{x < k \leq s} \lambda(pk) \geq \sum_{x < k \leq s} \Lambda(pk)
\]

и, следовательно,

\[
\sum_{x < k \leq s} (\Lambda(pk + 1) - \Lambda(pk)) \geq \sum_{x < k \leq s} (\lambda(pk + 1) - \lambda(pk)) \geq 0.
\]
Следовательно, \(a \) – нормальная бусинка абака \(\Lambda \). Положим \(\iiota(a) = a \).

Рассмотрим теперь случай \(j = 1 \). Определим параметр \(x_0 \) следующим образом.

Пусть \(px + 1 \) и \(py + 1 \) – нормальные бусинки абака \(\Lambda \) таки, что \(y < x < i - 1 \). Имеем

\[
\sum_{y < k \leq i - 1} (\lambda(pk + 1) - \lambda(pk)) = \sum_{y < k \leq x - 1} (\lambda(pk + 1) - \lambda(pk)) + 1
\]
\[
+ \sum_{x < k \leq i - 1} (\lambda(pk + 1) - \lambda(pk)) \geq 1. \tag{5.1}
\]

Последующий — нелепость не более одного числа \(x_0 < i - 1 \) тако, что \(px_0 + 1 \)
– нормальная бусинка абака \(\Lambda \) и

\[
\sum_{x_0 < k \leq i - 1} (\lambda(pk + 1) - \lambda(pk)) = 0. \tag{5.2}
\]

Если такого числа вообще не существует, то положим \(x_0 = +\infty \). При таком определении мы получаем

ОСНОВНОЕ СВОЙСТВО ЭЛЕМЕНТА \(x_0 \). Пусть \(px + 1 \) – нормальная бусинка абака \(\Lambda \) такая, что \(x < i - 1 \). Тогда \(x \leq x_0 \) и \(\sum_{x < k \leq i - 1} (\lambda(pk + 1) - \lambda(pk)) > 0 \)
в случае \(x \neq x_0 \).

Действительно, в случае \(x_0 < +\infty \) этот факт следует из формулы (5.1). В случае \(x_0 = +\infty \)
рассматриваемая сумма не равна нулю по определению \(x_0 \) и, следовательно, строго положительна.

Если \(x > i \), то аналогично предыдущему случаю получаем, что \(a \) – нормальная бусинка абака \(\Lambda \). Положим \(\iiota(a) = a \).

Случай \(x = i \) невозможен, так как \(\lambda(pi + 1) = 0 \) и \(\lambda(px + 1) = 1 \).

Если \(x = i - 1 \), то \(\lambda(pi) = \lambda(pi) = 0 \), потому что \(\lambda(pi + 1) = 0 \) и \(a = p(i - 1) + 1 \)
– нормальная бусинка абака \(\Lambda \). Возьмем произвольное \(s > i \). Имеем

\[
\sum_{i < k \leq s} (\lambda(pk + 1) - \lambda(pk)) = \sum_{i - 1 < k \leq s} (\lambda(pk + 1) - \lambda(pk)) \geq 0.
\]

Теперь понятно, что \(pi + 1 \) – нормальная бусинка абака \(\Lambda \). Положим \(\iiota(a) = pi + 1 \).

Если \(x = x_0 \), то в силу свойства (5.2) получаем

\[
0 \leq \sum_{x_0 < k \leq i} (\lambda(pk + 1) - \lambda(pk)) = -\lambda(pi),
\]
\[
0 = \sum_{x_0 < k \leq x_0 - 1} (\lambda(pk + 1) - \lambda(pk))
\]
\[
= \sum_{x_0 < k \leq x_0 - 2} (\lambda(pk + 1) - \lambda(pk)) + 1 - \lambda(p(i - 1)) \geq 1 - \lambda(p(i - 1)).
\]

Следовательно, \(\lambda(pi) = 0 \) и \(\lambda(p(i - 1)) = 1 \).

Возьмем произвольное \(s > i \). Имеем

\[
\sum_{i < k \leq s} (\lambda(pk + 1) - \lambda(pk)) = \sum_{x_0 < k \leq s} (\lambda(pk + 1) - \lambda(pk)) \geq 0.
\]
Для преобразования в последней формуле мы воспользовались свойством (5.2) и тем, что \(\overline{X}(p) = X(p) = 0 \). Следовательно, \(p_i + 1 \) - нормальная бусинка абака \(\Lambda \). Положим \(\iota(a) = p_i + 1 \).

Пусть, наконец, \(x < i - 1 \) и \(x \neq x_0 \). Понятно, что для произвольного \(s > x \), не равного \(i - 1 \), мы имеем

\[
\sum_{x < k \leq s} (\Lambda(p_k + 1) - \Lambda(p_k)) = \sum_{i < k \leq s} (\overline{X}(p_k + 1) - \overline{X}(p_k)) \geq 0.
\]

С другой стороны, в силу основного свойства элемента \(x_0 \) имеем

\[
\sum_{x < k \leq i - 1} (\Lambda(p_k + 1) - \Lambda(p_k)) = \sum_{x < k \leq i - 1} (\overline{X}(p_k + 1) - \overline{X}(p_k)) - 1 \geq 0.
\]

Следовательно, \(a \) - нормальная бусинка а бака \(\Lambda \). Положим \(\iota(a) = a \).

Преобраз бусинки \(b \), принадлежащей образу \(i \), задается следующими формулами.

Случай \(j > 1 \): \(\iota^{-1}(b) = b \).

Случай \(j = 0 \): \(\iota^{-1}(b) = \begin{cases} b, & \text{если } b \neq p(i - 1) + 1; \\ p_i + 1, & \text{если } b = p(i - 1) + 1. \end{cases} \)

Случай \(j = 1 \): \(\iota^{-1}(b) = \begin{cases} b, & \text{если } b \neq p_i + 1; \\ p(i - 1) + 1, & \text{если } b = p_i + 1 \text{ и } \Lambda(p(i - 1)) = 0; \\ px_0 + 1, & \text{если } b = p_i + 1 \text{ и } \Lambda(p(i - 1)) = 1. \end{cases} \)

Следствие 5.3. Пусть \(\lambda \) - разбиение. Для любого \(\alpha \in \mathbb{Z}_p \) количество \(\text{cog}(\lambda) \text{-нормальных клеток вычета } \alpha \text{ не превосходит количества } \lambda \text{-нормальных клеток того же вычета.} \)

Доказательство следует из того, что для получения \(\text{cog}(\lambda) \) можно на каждом шаге удалить наибольший косой \(p \)-кружок.

§ 6. Действие отображения Мулино на некоторые разбиения

Для вычисления отображения Мулино от разбиения \(\lambda \) будем применять символ Мулино, введенный в [16], который есть массив

\[
G_p(\lambda) = \begin{pmatrix} A_0 \ldots A_z \\ R_0 \ldots R_z \end{pmatrix},
\]

где \(A_j = c(\varphi(\lambda)), R_j = h(\varphi(\lambda)) \) и \(\varphi^z(\lambda) = 0 \). Произведение таких массивов будем понимать следующим образом:

\[
\begin{pmatrix} A_0 \ldots A_z \\ R_0 \ldots R_z \end{pmatrix} \begin{pmatrix} A'_0 \ldots A'_{z'} \\ R'_0 \ldots R'_{z'} \end{pmatrix} = \begin{pmatrix} A_0 \ldots A_z A'_0 \ldots A'_{z'} \\ R_0 \ldots R_z R'_0 \ldots R'_{z'} \end{pmatrix}.
\]

Лемма 6.1. Пусть \(1 < H < p, x > 0 \) и \(H \parallel x \). Пусть \(Q = \text{quo}(x,H) \) и \(R = \text{rem}(x,H) \). Тогда если \(R > 1 \), то

\[
G_p(\overline{\lambda(H,x)}) = \begin{pmatrix} 2p \\ H \end{pmatrix}^Q \begin{pmatrix} p + R - 1 \\ H - 1 \end{pmatrix} x^{-2(Q+1)} \begin{pmatrix} p - R + 1 \\ H - R + 1 \end{pmatrix},
\]

и если \(R = 1 \), то

\[
G_p(\overline{\lambda(H,x)}) = \begin{pmatrix} 2p \\ H \end{pmatrix}^Q \begin{pmatrix} p \\ H - 1 \end{pmatrix} x^{-2Q}.
\]
Доказательство. Пусть $S = [0, H - 1] \setminus \{R - 1\}$, $\Lambda = \Lambda^{(H, x)}$ и $\lambda = \lambda^{(H, x)}$.

Легко проверить, что

$$
\phi^j(\Lambda) = (-\infty, 0) \cup (0, \{R - 1\}, Q - j) \cup (0, S, x - Q - j), \quad 1 \leq j \leq Q.
$$

Отсюда видно, что $h(\phi^j(\Lambda)) = H$ и $e(\phi^j(\lambda)) = 2p$ при $0 \leq j < Q$.

Случай $R > 1$. Тогда $h(\phi^Q(\lambda)) = H$. Имеем

$$
\phi^{Q+j}(\Lambda) = (-\infty, 0] \cup (1, S, x - 2Q - 1 - j), \quad 1 \leq j \leq x - 2Q - 1.
$$

Отсюда $e(\phi^Q(\lambda)) = p + R - 1$, $h(\phi^{Q+j}(\lambda^{H, x})) = H - 1$, $e(\phi^{Q+j}(\lambda^{H, x})) = p$ при $1 \leq j < x - 2Q - 1$ и $h(\phi^{x-Q-1}(\lambda^{H, x})) = H - R + 1$. Наконец, $\phi^{x-Q-1}(\lambda^{H, x}) = \emptyset$ и $e(\phi^{x-Q-1}(\lambda^{H, x})) = p - R + 1$.

Случай $R = 1$. Тогда $h(\phi^Q(\lambda)) = H - 1$. Имеем

$$
\phi^{Q+j}(\Lambda) = (-\infty, 0] \cup (1, S, x - 2Q - j), \quad 0 \leq j \leq x - 2Q.
$$

Отсюда $h(\phi^{Q+j}(\lambda)) = H - 1$ при $1 \leq j < x - 2Q$, $\phi^{x-Q}(\lambda) = \emptyset$ и $e(\phi^{Q+j}(\lambda)) = p$ при $0 \leq j < x - 2Q$.

Определение 6.2. Пусть H и x — целые числа такие, что $1 < H < p$, $x > 0$ и $H \nmid x$. Положим

$$
N^{(H, x)} = \left\{ -\infty, H \right\} \cup (H, S_1, Q) \cup (p + H - R, S_2, x - Q),
$$

$$
\nu^{(H, x)} = P(N^{(H, x)}),
$$

где $Q = \text{quo}(x, H)$, $R = \text{rem}(x, H)$, $S_1 = [0, p - 1] \setminus \{H - R\}$ и $S_2 = \{H - R\} \cup [H,p - 1]$.

Для лучшего понимания устройства абака $N^{(H, x)}$ введем следующие обозначения. Пусть $a_0^{(H, x)}, a_1^{(H, x)}, \ldots$ — все элементы множества $\{n \in \mathbb{Z} : n \geq H, \text{rem}(n,p) \in S_1\}$ и $b_0^{(H, x)}, b_1^{(H, x)}, \ldots$ — все элементы множества $\{n \in \mathbb{Z} : n \geq p + H - R, \text{rem}(n, p) \in S_2\}$, перечисленные в порядке возрастания. Элементарная проверка показывает, что

$$
a^{(H, x)}_y = H + y + \left\lfloor \frac{R - 1 + y}{p - 1} \right\rfloor,
$$

$$
b^{(H, x)}_y = p + H - 1 + y + (H - R) \left\lfloor \frac{y}{p - H + 1} \right\rfloor + (R - 1) \left\lfloor \frac{y - 1}{p - H + 1} \right\rfloor. \quad (6.1)
$$

Лемма 6.3. Пусть H и x — целые числа такие, что $1 < H < p$, $x > 0$ и $H \nmid x$. Тогда $m(\lambda^{(H, x)}) = \nu^{(H, x)}$.

Доказательство. Пусть \(Q, R, S_1, S_2 \) будут как в определении 6.2 и \(N = N^{(H, s)}, \nu = \nu^{(H, s)} \). В силу основного результата работы [8] и леммы 6.1 достаточно показать, что если \(R > 1 \), то
\[
G_p(\nu) = \left(\frac{2p}{2p - H} \right)^Q \left(\frac{p + R - 1}{p + R - H} \right) \left(\frac{p}{p - H + 1} \right)^{x - 2Q + 1} \left(\frac{p - R + 1}{p - H + 1} \right), \tag{6.2}
\]
и если \(R = 1 \), то
\[
G_p(\nu) = \left(\frac{2p}{2p - H} \right)^Q \left(\frac{p}{p - H + 1} \right)^{x - 2Q}. \tag{6.3}
\]
Для начала выясним, как расположены друг относительно друга множества \((H, S_1, y) \) и \((p + H - R, S_2, x - 2Q + y) \). Обозначим через \(u_y^{(H, x)} \) максимальный элемент первого множества и через \(v_y^{(H, x)} \) минимальный элемент второго множества. Имеем \(u_y^{(H, x)} = a_{y + p - 2}^{(H, x)} \) и \(v_y^{(H, x)} = b_{x - 2Q + y}^{(H, x)} \).
Для \(y \geq 0 \) из формулы (6.1) получаем
\[
v_{y - 1} - u_y = b_{x - 2Q + y - 1}^{(H, x)} - a_{y + p - 2}^{(H, x)} = x - 2Q + (H - R) \left[\frac{x - 2Q + y - 1}{p - H + 1} \right] + (R - 1) \left[\frac{x - 2Q - y - 2}{p - H + 1} \right] \left[\frac{R + y + p - 3}{p - 1} \right] \geq x - 2Q - 1 + \left[\frac{x - 2Q + y - 2}{p - H + 1} \right] \left[\frac{R + y + p - 3}{p - 1} \right]. \tag{6.4}
\]
Так как \(x - 2Q \geq R \), то первое и последнее слагаемые последней суммы неотрицательны при любом \(y \geq 0 \). Кроме этого, \(p - H + 1 \leq p - 1 \). В случае \(Q > 0 \) имеем \(x - 2Q + y + p - H = (H - 2)Q + R + y + p - H > p + y + R - 3 \) и, следовательно,
\[
\left[\frac{x - 2Q + y + p - H}{p - H + 1} \right] \geq \left[\frac{R + y + p - 3}{p - 1} \right] \geq 1. \tag{6.5}
\]
В случае \(Q = y = 0 \) получаем
\[
\left[\frac{x + p - H}{p - H + 1} \right] \geq 1 \geq \left[\frac{R + p - 3}{p - 1} \right].
\]
Таким образом, мы доказали, что \(v_{y - 1} \geq u_y \) при \(0 \leq y \leq Q \). Напомним, что если \(y \geq 0 \), то \(v_{y - 1} \) - это позиция, куда переходит максимальная буксина множества \((p + H - R, S_2, x - 2Q + y) \) при поднятии на одну позицию.
Теперь легко проверить, что
\[
\Phi^j(N) = (\infty, H) \cup (H, S_1, Q - j) \cup (p + H - R, S_2, x - Q - j), \quad 0 \leq j \leq Q.
\]
Отсюда \(h(\Phi^j(\nu)) = 2p - H \) и \(c(\Phi^j(\nu)) = 2p \) при \(0 \leq j < Q \). Кроме того,
\[
h(\Phi^Q(\nu)) = p + R - H.
\]
В случае \(R > 1 \) имеем \(x - 2Q \geq 2 \) и
\[
\Phi^{Q + j}(N) = (\infty, p + H - 1) \cup (p + H, S_2, x - 2Q - 1 - j), \quad 1 \leq j \leq x - 2Q - 1.
\]
О расширениях и правилах ветвлений модулей

Отсюда \(e(\varphi^Q(N)) = p + R - 1, e(\varphi^{Q+j}(N)) = p \) при \(1 \leq j < x - 2Q - 1 \), \(h(\varphi^{Q+j}(N)) = p - H + 1 \) при \(1 \leq j < x - 2Q - 1 \), \(e(\varphi^{x-Q}(N)) = p - R + 1 \) и \(\varphi^{x-Q}(N) = \emptyset \).

В случае \(R = 1 \) имеем

\[
\varphi^{Q+j}(N) = \left(-\infty, p + H - 1 \right) \cup \left(p + H - 1, S_2, x - 2Q - j \right), \quad 0 \leq j \leq x - 2Q.
\]

Отсюда \(e(\varphi^{Q+j}(N)) = p \) и \(h(\varphi^{Q+j}(N)) = p - H + 1 \) при \(0 \leq j < x - 2Q \) и \(\varphi^{x-Q}(N) = \emptyset \).

Лемма 6.4. Пусть \(h, i, x \) — целые числа такие, что \(0 < i < h < p \) и \(x \geq h \).

Тогда если \(i \geq h/2 \) и \(x \geq h \), то

\[
G_p(\lambda^{(h,i,x)}) = \begin{pmatrix}
A_0 & \ldots & A_{h-i-1} \\
R_0 & \ldots & R_{h-i-1}
\end{pmatrix} \begin{pmatrix} p \end{pmatrix}^{x-2(h-i)}
\times \begin{pmatrix}
A_0 - 2i & \ldots & A_{h-i-1} - 2i \\
R_0 - i & \ldots & R_{h-i-1} - i
\end{pmatrix},
\]

если \(i < h/2 \) и \(x \geq 2i \), то

\[
G_p(\lambda^{(h,i,x)}) = \begin{pmatrix}
A_0 & \ldots & A_{i-1} \\
R_0 & \ldots & R_{i-1}
\end{pmatrix} \begin{pmatrix} p \end{pmatrix}^{x-2i}
\times \begin{pmatrix}
A_0 - 2(h-i) & \ldots & A_{i-1} - 2(h-i) \\
R_0 - (h-i) & \ldots & R_{i-1} - (h-i)
\end{pmatrix},
\]

если \(x < 2i, h, \) то

\[
G_p(\lambda^{(h,i,x)}) = \begin{pmatrix}
A_0 & \ldots & A_{x-i-1} \\
R_0 & \ldots & R_{x-i-1}
\end{pmatrix} \begin{pmatrix} p \end{pmatrix}^{2i-x}
\times \begin{pmatrix}
A_0 - 2(i + h - x) & \ldots & A_{x-i-1} - 2(i + h - x) \\
R_0 - (i + h - x) & \ldots & R_{x-i-1} - (i + h - x)
\end{pmatrix},
\]

где \(A_j = p + h - 1 - 2j \) и \(R_j = h - j \).

Доказательство. Положим \(S = [0, i - 1], \Lambda = \lambda^{(h,i,x)} \) и \(\lambda = \lambda^{(h,i,x)} \).

Случай \(i \geq h/2 \) и \(x \geq h \). Для \(0 < j < h - i \) имеем \(x - j - 1 \geq x - h + i \) и, следовательно, первый элемент множества \(\{0, S, x - j - 1\} \) не меньше \(p \). Отсюда получаем

\[
\varphi^j(\Lambda) = (-\infty, j) \cup \{0, S, x - j - 1\} \cup [i, h - j], \quad 0 \leq j \leq h - i.
\]

Следовательно, \(h(\varphi^j(\Lambda)) = R_j \) при \(0 \leq j \leq h - i \) и \(e(\varphi^j(\Lambda)) = A_j \) при \(0 \leq j < h - i \). Далее,

\[
\varphi^{h-i+j}(\Lambda) = (-\infty, h - i) \cup (h - i, S, x - 2(h - i) - j), \quad 0 \leq j \leq x - 2(h - i).
\]

Отсюда \(e(\varphi^{h-i+j}(\Lambda)) = p \) при \(0 \leq j < x - 2(h - i) \), \(h(\varphi^{h-i+j}(\Lambda)) = i \) при \(1 \leq j < x - 2(h - i) \) и \(h(\varphi^{x-(h-i)}(\Lambda)) = h - i \). Наконец,

\[
\varphi^{x-(h-i)+j}(\Lambda) = (-\infty, i + j) \cup [p, p + h - i - j], \quad 0 \leq j \leq h - i.
\]
Отсюда \(e(\varphi^{x-(h-i)+j}(\lambda)) = A_j - 2i \) при \(0 \leq j < h - i \) и \(h(\varphi^{x-(h-i)+j}(\lambda)) = R_j - i \) при \(1 \leq j \leq h - i \).

Случай \(i < h/2 \) и \(x \geq 2i \). Для \(0 \leq j < i \) имеем \(x - j - 1 \geq i \) и, следовательно, первый элемент множества \(0, S, x - j - 1 \) не менее \(p \). Отсюда получаем

\[
\varphi^j(\Lambda) = (\infty, j) \cup (0, S, x - j) \cup [i, h - j), \quad 0 \leq j \leq i.
\]

Следовательно, \(h(\varphi^j(\lambda)) = R_j \) и \(e(\varphi^j(\lambda)) = A_j \) при \(0 \leq j < i \). Далее,

\[
\varphi^{i+j}(\Lambda) = (-\infty, h - i) \cup (p, S, x - 2i - j), \quad 0 \leq j \leq x - 2i.
\]

Отсюда \(e(\varphi^{i+j}(\lambda)) = p \) и \(h(\varphi^{i+j}(\lambda)) = i \) при \(0 \leq j < x - 2i \). Наконец,

\[
\varphi^{-i+j}(\Lambda) = (-\infty, h - i + j) \cup [p, p + i - j), \quad 0 \leq j \leq i.
\]

Отсюда \(e(\varphi^{-i+j}(\lambda)) = A_j - 2(h - i) \) при \(0 \leq j < i \) и \(h(\varphi^{-i+j}(\lambda)) = R_j - (h - i) \) при \(0 \leq j \leq i \).

Случай \(x < 2i, h \). Для \(0 \leq j < x - i \) имеем \(x - j - 1 \geq i \) и, следовательно, первый элемент множества \(0, S, x - j - 1 \) не менее \(p \). Отсюда получаем

\[
\varphi^j(\Lambda) = (\infty, j) \cup (0, S, x - j) \cup [i, h - j), \quad 0 \leq j \leq x - i.
\]

Следовательно, \(h(\varphi^j(\lambda)) = R_j \) при \(0 \leq j \leq x - i \) и \(e(\varphi^j(\lambda)) = A_j \) при \(0 \leq j < x - i \). Далее,

\[
\varphi^{x-i+j}(\Lambda) = (-\infty, x - i) \cup (x-i, S, 2i - x - j) \cup [h, h - x + i), \quad 0 \leq j \leq 2i - x.
\]

Отсюда \(e(\varphi^{x-i+j}(\lambda)) = p \) при \(0 \leq j < 2i - x \) и \(h(\varphi^{x-i+j}(\lambda)) = i + h - x \) при \(1 \leq j < 2i - x \). Наконец,

\[
\varphi^{i+j}(\Lambda) = (-\infty, h - x + i + j) \cup [p, p + x - i - j), \quad 0 \leq j \leq x - i.
\]

Отсюда \(e(\varphi^{i+j}(\lambda)) = A_j - 2(i + h - x) \) при \(0 \leq j < x - i \) и \(h(\varphi^{i+j}(\lambda)) = R_j - (i + h - x) \) при \(0 \leq j \leq x - i \).

ОПРЕДЕЛЕНИЕ 6.5. Пусть \(h, i, x \) — целые числа такие, что \(0 < i \leq h < p \) и \(x \geq i \). Положим

\[
M^{(h,i,x)} = (-\infty, p) \cup [p + h - m, p + h) \cup (p, S, x),
\]

\[
\mu^{(h,i,x)} = P(M^{(h,i,x)}),
\]

где \(m = \max\{i, i + h - x\} \) и \(S = [0, h - m) \cup [h, p - 1] \).

Пусть \(e_0^{(h,i,x)}, e_1^{(h,i,x)}, \ldots \) — все элементы множества

\[
\{n \in \mathbb{Z} : n \geq p, \text{ rem}(n, p) \in S\},
\]

перечисленные в порядке возрастания. Элементарная проверка показывает, что

\[
e_y^{(h,i,x)} = p + y + m + m \left\lfloor \frac{y + m - h}{p - m} \right\rfloor,
\]

(6.6)
Лемма 6.6. Пусть h, i, x рациональные числа такие, что $0 < i < h < p$ и $x \geq i$. Тогда $r_m(A_{h,i,x}) = \mu^{(h,i,x)}$.

Доказательство. Пусть m и S будут как в определении 6.5, A_j и R_j — как в лемме 6.4 и $M = M^{(h,i,x)}, \mu = \mu^{(h,i,x)}, S_j = p - j$.

Случай $i \geq h/2$ и $x \geq h$. Тогда $m = i$. Имеем

$$2p > A_0 > \cdots > A_{h-i-1} > p > A_0 - 2i > \cdots > A_{h-i-1} - 2i > 0.$$ Следовательно, в силу основного результата работы [8] и леммы 6.4 достаточно показать, что

$$G_p(\mu) = \left(\begin{array}{cccc} A_0 & \cdots & A_{h-i-1} \\ S_0 & \cdots & S_{h-i-1} \end{array} \right) \left(\begin{array}{c} p \\ p-i \end{array} \right)^{x-2(h-i)} \left(\begin{array}{c} A_0 - 2i \\ S_0 - i \end{array} \right) \cdots \begin{array}{c} \cdots \\ \cdots \end{array} \left(\begin{array}{c} A_{h-i-1} - 2(h-i) \\ S_{h-i-1} - (h-i) \end{array} \right).$$

Заметим, что $x - 2(h-i) \geq 0$. Поэтому для $0 \leq j < h - i$ имеем $x - j - 1 \geq h - i$ и следовательно, первый элемент множества $\langle p, S, x - j - 1 \rangle$ не менее $p + h$. Отсюда получаем

$$\varphi^j(M) = (\infty, p + j) \cup [p + h - i, p + h - j) \cup (p, S, x - j), \quad 0 \leq j \leq h - i.$$ Следовательно, $e(\varphi^i(\mu)) = A_j$ и $h(\varphi^j(\mu)) = S_j$ при $0 \leq j < h - i$. Далее,

$$\varphi^{h-i+j}(M) = (\infty, p + i) \cup (p + h, S, x - 2(h - i) - j), \quad 0 \leq j \leq x - 2(h - i).$$ Отсюда $e(\varphi^{h-i+j}(\mu)) = p$ и $h(\varphi^{h-i+j}(\mu)) = p - i$ при $0 \leq j < x - 2(h - i)$. Имеем

$$\varphi^{x-(h-i)+j}(M) = (\infty, p + i + j) \cup [p + h, 2p + h - i - j), \quad 0 \leq j \leq h - i.$$ Отсюда $e(\varphi^{x-(h-i)+j}(\mu)) = A_j - 2i$ и $h(\varphi^{x-(h-i)+j}(\mu)) = S_j - i$ при $0 \leq j < h - i$ и $\varphi^x(\mu) = \emptyset$.

Случай $i < h/2$ и $x \geq 2i$. Имеем

$$2p > A_0 > \cdots > A_{i-1} > p > A_0 - 2(h - i) > \cdots > A_{i-1} - 2(h - i) > 0.$$ Следовательно, в силу основного результата работы [8] и леммы 6.4 достаточно показать, что

$$G_p(\mu) = \left(\begin{array}{cccc} A_0 & \cdots & A_{i-1} \\ S_0 & \cdots & S_{i-1} \end{array} \right) \left(\begin{array}{c} p \\ p-i \end{array} \right)^{x-2i} \left(\begin{array}{c} A_0 - 2i \\ S_0 - i \end{array} \right) \cdots \begin{array}{c} \cdots \\ \cdots \end{array} \left(\begin{array}{c} A_{i-1} - 2(h-i) \\ S_{i-1} - (h-i) \end{array} \right).$$

Для $0 \leq j < i$ имеем $x - j - 1 \geq h - m$. Следовательно, первый элемент множества $\langle p, S, x - j - 1 \rangle$ не менее $p + h$. Отсюда получаем

$$\varphi^j(M) = (\infty, p + j) \cup [p + h - m, p + h - j) \cup (p, S, x - j), \quad 0 \leq j \leq i.$$ Следовательно, $e(\varphi^j(\mu)) = A_j$ и $h(\varphi^j(\mu)) = S_j$ при $0 \leq j < i$. Для $0 \leq j < x - 2i$ имеем

$$\varphi^{i+j}(M) = \left\{ \begin{array}{ll} (\infty, p + i) \cup [p + x - i - j, p + h - i) \cup [p + h, 2p + x - i - j), \quad \text{если } x < h; \\ (\infty, p + i) \cup (p + i, S, x - 2i - j), \quad \text{если } x \geq h. \end{array} \right.$$
Отсюда $e(\varphi^{i+j}(\mu)) = p$ и $h(\varphi^{i+j}(\mu)) = p - i$ при $0 \leqslant j < x - 2i$. Наконец,
$$\varphi^{x-i+j}(M) = \left(-\infty, p + h - i + j\right) \cup \left[p + h, 2p + i - 1 - j\right], \quad 0 \leqslant j \leqslant i.$$
Отсюда $e(\varphi^{x-i+j}(\mu)) = A_j - 2(h - i), h(\varphi^{x-i+j}(\mu)) = S_j - (h - i)$ при $0 \leqslant j < i$ и $\varphi^{x}(\mu) = \emptyset$.

Случай $x < 2i, h$. Тогда $m = i + h - x$. Имеем
$$2p > A_0 > \cdots > A_{x-i-1} > p > A_0 - 2(i + h - x) > \cdots > A_{x-i-1} - 2(i + h - x) > 0.$$ Следовательно, в силу основного результата работы [8] и леммы 6.4 достаточно показать, что
$$G_p(\mu) = \left(A_0 \cdots A_{x-i-1}\right) \left(p - (i + h - x)\right)^{2i-x} \times \left(A_0 - 2(i + h - x) \cdots A_{x-i-1} - 2(i + h - x)\right) \left(S_0 - (i + h - x) \cdots S_{x-i-1} - (i + h - x)\right).$$
Для $0 \leqslant j < x - i$ имеем $x - j - 1 \geqslant i > x - i$ и, следовательно, первый элемент множества $(p, S, x - j - 1)$ не менее $p + h$. Отсюда получаем
$$\varphi^{j}(M) = \left(-\infty, p + j\right) \cup \left[p + x - i, p + h - j\right) \cup \left(p, S, x - j\right), \quad 0 \leqslant j \leqslant x - i.$$
Следовательно, $e(\varphi^{j}(\mu)) = A_j$ и $h(\varphi^{j}(\mu)) = S_j$ при $0 \leqslant j < x - i$. Далее,
$$\varphi^{x-i+j}(M) = \left(-\infty, p + i + h - x\right) \cup \left(p + h, S, 2i - x - j\right), \quad 0 \leqslant j \leqslant 2i - x.$$ Отсюда $e(\varphi^{x-i+j}(\mu)) = p$ и $h(\varphi^{x-i+j}(\mu)) = p - (i + h - x)$ при $0 \leqslant j < 2i - x$. Наконец,
$$\varphi^{i+j}(M) = \left(-\infty, p + i + h + x - j\right) \cup \left[p + h, 2p + x - i - 1 - j\right], \quad 0 \leqslant j \leqslant x - i.$$ Отсюда $e(\varphi^{i+j}(\mu)) = A_j - 2(i + h - x)$ и $h(\varphi^{i+j}(\mu)) = S_j - (i + h - x)$ при $0 \leqslant j < x - i$ и $\varphi^{x}(\mu) = \emptyset$.

Интересно посмотреть на разбиения $\nu(2, x)$, когда $p > 2$ и x — нечетное число, большее двух. В силу лемм 6.3 и 6.6 получаем $m(\lambda^{(2, x)}) = \nu(2, x)$ и $m(\lambda^{(2, x)}) = \lambda^{(2, x)}$. Имеем $h(\nu(2, x)) = 2p - 2$ и $h(\lambda^{(p-2, x)}) = p - 2$. Отсюда $\nu(2, x) \not\equiv \lambda^{(p-2, x)}$ и $(\nu(2, x))^t \not\equiv (\lambda^{(p-2, x)})^t$. Примем самодействие простых $S_{p, x}$-модулей и теорему 4.6 (или теорему 3.5 (iv) работы [17]), теорему 4.4 (b) работы [18] и утверждения [19; II: 2.14(4)], [20; 2.14], получаем
$$K \cong \operatorname{Ext}^1_{S_{p, x}}(D(\lambda^{(2, x)}), D(\lambda^{(2, x)})) \cong \operatorname{Ext}^1_{S(N, px)}(L((\nu(2, x))^t), L((\lambda^{(p-2, x)})^t)) \cong \operatorname{Hom}_{S(N, px)}(\operatorname{rad} \Delta((\nu(2, x))^t), L((\lambda^{(p-2, x)})^t)),$$
где $N \geqslant px$ и $S(N, px)$ обозначает алгебру Шура. Определение 6.2 и формулы (6.1) показывают, что $\nu(2, x+2(p-1)) = \nu(2, x) + (p^2p - 2)$. Примем следствие 5 (4), теорему 4 (а) и лемму 4 работы [21], получаем отрицательное решение проблемы 2 работы [21] для следующих значений параметров: $\lambda := \nu(2, x), q_i := p, n := 2p - 2, V_i := \operatorname{rad} S^{\lambda_i + (q_i)}$.

В оставшейся части параграфа зафиксируем целые числа H, x, i такие, что
$$1 < H < p, H \not\equiv x \mod{0, i \leqslant x, h}, \text{где } h = H - \operatorname{rem}(x, H).$$ Положим также
$$Q = \operatorname{quo}(x, H), R = \operatorname{rem}(x, H), m = \max\{i, i + h - x\}, S_1 = [0, p - 1] \setminus \{h\}, S_2 = \{h\} \cup [H, p - 1] \text{ и } S = [0, h - m) \cup [h, p - 1].$$
Лемма 6.7. Справедливо следующее:

а) если $c_{y}^{(h, i, x)} \geq b_{z}^{(H, x)}$ и $y > 0$, то $c_{y}^{(h, i, x)} \geq x_{z}^{(h, x)}$;

б) если $a_{y}^{(h, i, x)} \leq z$ и $y > 0$, то $a_{y}^{(h, i, x)} \leq z$;

в) если $a_{y}^{(h, i, x)} > z$ и $y \geq m - 1$, $0 \leq m \leq p$, то $a_{y-j}^{(h, i, x)} \geq z - j$ для $0 \leq j < m$.

Доказательство следует из взаимного расположения множеств S, S_1, S_2.

Теорема 6.8. Следующие условия эквивалентны:

1) $m(\lambda(H, x)) \leq m(\lambda(h, i, x))$;

2) $m \left(\frac{p - h + x - 1}{p - m} \right) \geq H - Q - 1 + h \left(\frac{x - Q - 1}{p - H + 1} \right) + (R - 1) \left(\frac{x - Q - 2}{p - H + 1} \right)$.

Доказательство. Так как $\text{shift}(N^{(H, x)}) = \text{shift}(M^{(h, i, x)}) = 2p$ (иначе для этого равенства мы добавили лишнюю строчку в определении абака $M^{(h, i, x)}$), то в силу первой из формул (2.1) и леммы 6.3 и 6.6 условие 1) данной теоремы эквивалентно тому, что $u \leq v$, где

$$u = (b_{x-Q+p-H-1}^{(H, x)}, b_{Q-p-2}^{(H, x)}, a_{Q}^{(H, x)}, H - 1, \ldots, 0),$$

$$v = (c_{x-p-m}^{(h, i, x)}, c_{Q}^{(h, i, x)}, p - h - 1, \ldots, p + h - m, p - 1, \ldots, 0).$$

Легко видеть, что условие 2) данной теоремы эквивалентно тому, что $u_1 \leq v_1$. Поэтому из 1) следует 2).

Предположим теперь, что условие 2) выполнено. Заметим, что $m \leq h < H$ и, следовательно, $p - m \geq p - H + 1$. Из эквивалентности предыдущего абзаца и леммы 6.7, а) получаем $u_j \leq v_j$ при $1 \leq j \leq p - H + 1$.

Пусть теперь $p - H + 1 < j \leq p - m$. В силу формул (6.1) и (6.6) имеем

$$v_j - u_j = c_{x-p-m-j}^{(h, i, x)} - a_{Q+2p-H-j}^{(h, i, x)} = x - Q + m \left(\frac{x + p - j - h}{p - m} - \left(\frac{2p + 1 + Q - j - h}{p - 1} \right) \right) = x - Q - 1 + m \left(\frac{x + p - j - h}{p - m} - \left(\frac{p + Q - j - h}{p - 1} \right) \right).$$

Так как $m \geq 1, p - m \leq p - 1$ и $(x + p - j - h) - (p + Q - j - h) = x - Q > 0$, то

$$m \left(\frac{x + p - j - h}{p - m} \right) \geq \left(\frac{p + Q - j - h}{p - 1} \right)$$

и $v_j \geq u_j$.

Случай 1: $m = 0$ либо $m > 0$, $v_{p-m+1} \geq u_{p-m+1}$. В силу леммы 6.7, б) получаем, что $v_j \geq u_j$ для $p - m < j \leq p$. Таким образом, доказано, что $v_j \geq u_j$ при $1 \leq j \leq p$. Имеем $v_j \leq u_j$ для $p < j \leq 2p$, так как v_j - несобственная бусина абака $M^{(h, i, x)}$ для такого j. Отсюда $\sigma_j(v) - \sigma_j(u) \geq \sigma_{2p}(v) - \sigma_{2p}(u) = 0$ для любого $p \leq j \leq 2p$. Следовательно, $u \leq v$.

Случай 2: $m > 0$ и $v_{p-m+1} < u_{p-m+1}$. В силу леммы 6.7, в) получаем, что $v_j \leq u_j$ для $p - m < j \leq p$. Имеем $v_j \leq u_j$ для $p < j \leq 2p$, так как v_j - несобственная бусина абака $M^{(h, i, x)}$ для такого j. Отсюда $\sigma_j(v) - \sigma_j(u) \geq \sigma_{2p}(v) - \sigma_{2p}(u) = 0$ для любого $p - m \leq j \leq 2p$. Следовательно, $u \leq v$.

О расширениях и правилах ветвления моделей

145
Введение. Нам понадобится только то, что из 1) следует 2). Обратное следствие доказано для того, чтобы показать невозможность улучшения оценок заменой более простого условия 2) на более сложное условие 1).

§ 7. Вспомогательная оценка сверху

7.1. Системы. Введем следующие ступенчатые абаки и разбиения. Пусть $k \geq 0$ и $0 < r_2 < \cdots < r_k < p, i_1 > \cdots > i_{k-1} \geq 0$ — некоторые целые числа. Положим

$$St(r_2, \ldots, r_k; i_1, \ldots, i_{k-1}) = (-\infty, 0) \cup [p_1, p_1 + r_2) \cup [p_2 + r_2, p_2 + r_3) \cup \cdots \cup [p_{k-1} + r_{k-1}, p_{k-1} + r_k), \quad st(r_2, \ldots, r_k; i_1, \ldots, i_{k-1}) = P(St(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})),$$

В случае $k = 1$ мы будем считать, что $St(\varnothing; \varnothing) = (-\infty, 0]$ и $st(\varnothing; \varnothing) = \varnothing$.

Частые случаи ступенчатых абаков уже встречались в § 6. Действительно, пусть h, i, x — целые числа такие, что $0 < i \leq h < p$ и $x \geq 0$. Положим $q = \text{quo}(x, i)$ и $r = \text{rem}(x, i)$. Тогда

$$\Lambda(h, i, x) = \begin{cases} St(i, h; q, 0), & \text{если } r = 0; \\ St(r, h; q + 1, q, 0), & \text{если } r > 0. \end{cases}$$ (7.1)

Лемма 7.1. Все решения системы

$$\begin{align*}
\begin{cases}
h(\lambda) < p; \\
\text{core}(\lambda) = \varnothing;
\end{cases}
\quad \text{если } \lambda \neq \varnothing,
\end{align*}$$ (7.2)

составляют разбиения $st(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})$.

Доказательство. Легко видеть, что указанные разбиения удовлетворяют системе. Докажем обратный факт индукцией по числу n клеток в $[\lambda]$. Для $n = 0$ это, очевидно, выполнено. Пусть теперь $n > 0$ и λ — решение системы (7.2). Так как $\lambda \neq \varnothing = \text{core}(\lambda)$, то существует хотя бы одна косая p-крок разбиения λ. Обозначим через λ разбиение, полученное из λ удалением наименьшего из этих кроков.

По лемме 5.2 получаем, что разбиение λ тоже удовлетворяет системе (7.2). В силу индуктивного предположения $\lambda = st(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})$.

Возьмем абак Λ такой, что

$$\lambda = P(\Lambda), \quad \text{shift}(\Lambda) = \text{shift}(St(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})).$$

Мы получаем, что существует некоторая опускаемая бусинка a абака $St(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})$ такая, что Δ получен из $St(r_2, \ldots, r_k; i_1, \ldots, i_{k-1})$ опусканием бусинки a на одну позицию.

Случай $k = 1$. Так как $h(\lambda) < p$, то $-p < a < 0$ и $\lambda = st(1, -a; 1, 0)$, если $a < -1$, и $\lambda = st(1; 1)$, если $a = -1$.

Случай $k > 1$. Мы можем считать, что $i_1 > 0$, так как иначе $\lambda = \varnothing$ и мы находились в условиях предыдущего случая. Так как $h(\lambda) < p$, то $r_k - p < a$. В случае, когда $a < -1$ или $a \leq -1$ и $i_k > 1$, абак Λ будет содержать следующие...
две нормальные бусинки в различных столбцах: \(p_i + a + p \). Следовательно, для \(\lambda \) третье уравнение системы (7.2) нарушило и этот случай невозможен. Если \(a = -1 \) и \(i_k = 1 \), то \(\lambda = st(r_2 + 1, \ldots, r_k + 1; i_1, \ldots, i_{k - 1}), k = 2, 3 \).

Предположим теперь, что \(a \geq 0 \). В силу выполнения для \(\lambda \) третьего уравнения системы (7.2) мы получаем, что \(a \) может принимать только следующие значения: \(p_i + r_k \), где \(t = 1, \ldots, k - 1 \), и мы считаем \(r_1 = 0 \). В противном случае \(p_i + a + p \) будет нормальными бусинками абака \(\Lambda \), лежащими в различных столбцах. Теперь непосредственно из конструкции ступенчатых абаков видно, что \(\lambda \) имеет требуемый вид.

Вычислим, чему равно \(e(st(r_2, \ldots, r_k; i_1, \ldots, i_{k - 1})) \). Если \(k = 1 \), то это нуль. Поэтому рассмотрим случай \(k > 1 \). Определим последовательность \(1 = a_1 < \cdots < a_k \leq k - 1 \) по следующему правилу: \(a_{j + 1} = a_j + 1 \), если \(a_j + 1 \leq k - 1 \) и \(i_{a_j + 1} < i_{a_j} - 1 \); \(a_{j + 1} = a_j + 2 \), если \(a_j + 2 \leq k - 1 \) и \(i_{a_j + 1} = i_{a_j} - 1 \). Из последней формулы, 2.4 получаем

\[
e(st(r_2, \ldots, r_k; i_1, \ldots, i_{k - 1})) = \begin{cases} p_l, & \text{если } i_{a_1} > 0; \\ p(l - 1) + r_k - 1, & \text{если } i_{a_1} = 0. \end{cases}
\]

Таким образом, если \(e(\lambda) < 2p \) и \(\lambda \) - ступенчатое разбиение, то \(\lambda \) имеет один из следующих видов: \(\emptyset \), \(st(r_2, r_3; i_1, 0) \), \(st(r_2, r_3, r_4; i_1, i_2, 1, 0) \). Отсюда и из формулы (7.1) получаем

Лемма 7.2. Все решения системы

\[
\begin{align*}
&h(\lambda) < p; \\
&\text{core}(\lambda) = \emptyset; \\
&\text{res} A = \text{res} B \quad \text{для любых } \lambda\text{-нормальных клеток } A \text{ и } B; \\
&h(\lambda) + h(m(\lambda)) < 2p
\end{align*}
\]

составляют разбиения \(\lambda^{(h, i, x)} \), где \(0 < i \leq h < p \) и \(x \geq 0 \).

К последнему неравенству можно добавить \(i \leq x \).

7.2. Оценка. Сформулируем следующий известный факт.

Утверждение 7.3. Пусть \(n > 2 \) и \(V = K\Sigma_{n-1} \text{-модуль. Тогда} \)

а) \(V^+ \otimes \text{sgn}_n \cong (V \otimes \text{sgn}_{n-1})^+ \Sigma_n \);

б) \(\text{Ind}^\Sigma V \otimes \text{sgn}_n \cong \text{Ind}^{-\Sigma} (V \otimes \text{sgn}_{n-1}) \).

Доказательство. а) Изоморфизм задается формулой \((\sigma_i \otimes v) \otimes u \mapsto \sigma_i \otimes (v \otimes u) \), где \(\sigma_1, \ldots, \sigma_n \) - представители левого слева клеток группы \(\Sigma_n \), \(\Sigma_{n-1} \) одного знака, \(v \in V \) и \(u \) - базис знакопеременного представления группы \(\Sigma_n \).

б) Следует из а) и рассуждений, приведенных при доказательстве теоремы 4.7 работы [22].

Определение 7.4. Условие \(\pi(H, x, i) \) выполнено тогда и только тогда, когда

1) \(H, x, i \in \mathbb{Z}, 2 < H < p, H \not\mid x, 0 < i \leq x, h \text{ и } x > 2; \)

2) \(m \left[\frac{p - h + x - 1}{p - m} \right] \geq H - Q - 1 + h \left[\frac{x - Q - 1}{p - H + 1} \right] + (R - 1) \left[\frac{x - Q - 2}{p - H + 1} \right] \),

где \(Q = \text{quo}(x, H), R = \text{rem}(x, H), h = H - R \text{ и } m = \max\{i, i + h - x\} \).
ОПРЕДЕЛЕНИЕ 7.5. Пусть H, x, i — числа, для которых условие $\pi(H, x, i)$ выполнено. Тогда обозначим через $\varepsilon(H, x, i)$ на бор такой, что

$$-R + \lambda^{(h, i, x)} = \mathcal{H}_{\varepsilon(H, x, i)}(A^{(H, x)}),$$

где $R = \text{rem}(x, H)$ и $h = H - R$.

Легко понять, что требуемый на бор $\varepsilon(H, x, i)$ существует и задается следующим равенством:

$$\varepsilon(H, x, i) = ((-Q - 1)^R, (-Q)^{h-i}, (q - Q)^{i-r}, (q + 1) - Q)^r),$$

где $Q = \text{quo}(x, H), R = \text{rem}(x, H), h = H - R, q = \text{quo}(x, i), r = \text{rem}(x, i)$.

ОПРЕДЕЛЕНИЕ 7.6. Пары (ν, μ) называется минимальной, если

1) ν — почти вполне расширенное разбиение;
2) μ — p-регулярное разбиение;
3) $\nu \not\sim \mu$ и $\nu \sim \mu$;
4) для любой μ-хорошей клетки A существует ν-хорошая клетка B, такая, что $\text{res} B = \text{res} A$ и ν_B — не почти вполне расширенное разбиение.

Непосредственно из определения видно, что если $B - \nu$-нормальная клетка и ν — почти вполне расширенное разбиение, а ν_B — нет, то $\chi(\lambda) = p$ и $B = (1, \nu_1)$, где λ — прообраз ν. Следовательно, если (ν, μ) — минимальная пара, то все μ-нормальные клетки имеют вычет, равный $\nu_1 - 1 = \Xi_1$.

Лемма 7.7. Пусть (ν, μ) — минимальная пара разбиений числа n. Положим $x = n/p$ и $H = h(\lambda)$, где λ — прообраз ν. Предположим, что (ν, μ) отлична от $((p^2, p^2 - p), (p^2 - p))$ и от $((\lambda^{(H, 2)}, \lambda^{(H^2 - 2, 2)})$ и что $\text{Ext}_{\Sigma_n}^1(D^\nu, D^\mu) \neq 0$. Тогда $\nu = \lambda^{(H, x)}$ и $\mu = \lambda^{(H - \text{rem}(x, H), i, x)}$, где условие $\pi(H, x, i)$ выполнено.

ДОКАЗАТЕЛЬСТВО. Пусть α — вычет всех μ-нормальных клеток и $A - \nu$-хорошая клетка вычета α. По условию $n \geq p > 2$. Так как $h(\nu) < p$, то в силу утверждения 2.2 имеем

$$\text{Hom}_{\Sigma_n}(\text{rad } S^\nu, D^\mu) \cong \text{Ext}_{\Sigma_n}^1(D^\nu, D^\mu) \neq 0.$$

Отсюда $\nu < \mu$ и, в частности, $h(\mu) \leq h(\nu)$. Пусть $\nu = \lambda$, где λ — некоторое большое разбиение. Из того, что ν_A не является почти вполне расширенным разбиением, мы получаем, что $\chi(\lambda) = p$ и A лежит в первой строке.

Имеем $h(\nu) \leq h(\lambda)$. Предположим, что $h(\nu) < h(\lambda)$. Тогда ν — вполне расширенное разбиение. Из условия текущей теоремы и теоремы 4.6 получаем, что ν — большое разбиение и $\mu = \nu$. Сама правая клетка A' первой строки диаграммы $[\mu]$ удовлетворяет и, следовательно, нормальна. Однако $\text{res} A'$ равен вычету самой правой клетки последней строки диаграммы $[\nu]$, который отличен от $\text{res} A$ в силу того, что ν вполне расширенное и $h(\nu) > 1$. Приходим к противоречию, откуда $h(\nu) = h(\lambda)$.

По следствию 5.3 вычет любой $\text{core}(\mu)$-нормальной клетки, а в силу $\lambda \sim \mu$ и любой $\text{core}(\lambda)$-нормальной клетки равен $\text{res} A$, который, в свою очередь, равен вычету самой нижней λ-удаляемой клетки. По лемме 4.10 получаем, что $\lambda = \lambda^{(H, x)}$, $1 < H < p, x > 0$ и $H \parallel x$. Если бы $x = 1$, то мы получили бы противоречие.
$h(\nu) < h(\lambda)$. Поэтому $x > 1$. По лемме 4.13 получаем $h(\mu) < h(\lambda) = H$. Положим $Q = \text{quo}(x, H)$, $R = \text{rem}(x, H)$ и $h = H - R$.

В случае $R > 1$ положим $b = (Q + 1)p$, а в случае $R = 1$ положим $b = Qp$.

С учетом неравенства $x > 1$ получаем, что b — единственная нормальная, а следовательно, и хорошая бусинка абака $\Lambda(H, x)$, приведенная к нужному столбцу. Обозначим через B клетку разбиения ν, соответствующую бусинке b. По второй из формул (2.1) имеем $\text{res} B = -\text{shift}(\Lambda(H, x)) = -\overline{H}$. В силу леммы 3.4 имеем

$$0 < \dim \text{Ext}^1_{\mathcal{M}}(D^\nu, D^\mu)$$

$$\leq \dim \text{Ext}^1_{\mathcal{M}}(D^{\nu_B}, \text{Res}_{\overline{H}} D^\mu) + \dim \text{Hom}_{\mathcal{M}}(\text{rad Ind}_{\overline{H}} D^\nu, D^\mu).$$

Так как $\alpha = \overline{R} - \overline{H} \neq -\overline{H}$, то по условию теоремы $\text{Res}_{\overline{H}} D^\mu = 0$. Отсюда $\text{Hom}_{\mathcal{M}}(\text{rad Ind}_{\overline{H}} D^\nu, D^\mu) = 0$ и, в частности, $[\text{Ind}_{\overline{H}} D^\nu : D^\mu] > 0$. Упомянутая модули из последнего неравенства на sgn_n, в силу утверждения 7.3, б) получаем

$$[\text{Ind}_{\overline{H}} D^m(\nu_B) : D^m(\mu)] > 0.$$

(7.4)

Из доказательства теоремы 4.7 работы [22] следует, что $m(\nu_B) = m(\nu)_{B(m)}$, где $B^m(\nu_B) - m(\nu)$-хорошая клетка в ячейке \overline{H}. По лемме 6.3 получаем $m(\nu) = P(N[H, x])$.

Для краткости до конца доказательства этой теоремы положим $N = N[H, x], a_i = a_i^{[H, x]}, bi = b_i^{[H, x]}$ (см. определение 6.2 и формулы (6.1)). Докажем, что $m(\nu) \leq m(\mu)$.

Случай 1: $R > 1$. Имеем $a_{Q+1} < b_{x-Q}$. Действительно, в случае $Q > 0$ с учетом неравенства (6.5) подстановка $y = Q + 1$ в неравенство (6.4) дает $b_{x-Q} - a_{Q+1} \geq x - 2Q - 1 \geq R - 1 > 0$. С другой стороны, в случае $Q = 0$ имеем $a_{Q+1} = H + p < b_{x-Q}$, так как $x > 1$.

Обозначим через $b^{(m)}$ элемент множества $\{p + H - R, S_2, x - Q\}$, лежащий в столбце H. Понятно, что $b^{(m)}$ — нормальная бусинка абака N. Единственной начальной бусинкой абака N, отличной от $b^{(m)}$ и лежащей в столбце H, является a_Q в случае, когда $Q > 0$ и $p - 1 \mid Q$. Однако эта бусинка не нормальная, так как в данном случае $a_Q + p - 1 = a_{Q+p-2}$ и $a_Q + p = a_{Q+p-1} < b_{x-Q}$, откуда $N(a_Q + p - 1) = 1$ и $N(a_Q + p) = 0$. Следовательно, $b^{(m)}$ — хорошая бусинка абака N, ей соответствует клетка $B^{(m)}$ и $P(N^{b(m)}) = m(\nu)_{B(m)} = m(\nu_B)$.

Всеми начальными пробелами абака $N^{b(m)}$, лежащими в столбце H, являются следующие: $b^{(m)}_1; H$ в случае $Q > 0; a_{Q+p-1}$ в случае $p - 1 \mid Q$. Если в последнем случае $Q > 0$, то пробел a_{Q+p-1} не конформален. Положим $c = H$ в случае $Q > 0$ и $c = H + p$ в случае $Q = 0$. Имеем $c \leq a_{Q+p-1} < b_{x-Q} \leq b^{(m)}$. Таким образом, всеми конформальными пробелами абака $N^{b(m)}$, лежащими в столбце H, являются $b^{(m)}_1$ и c.

Случай 1.1: $m(\mu) \neq P(N^{c(b(m))})$. Обозначим через C добавляемую клетку разбиения $m(\nu_B)$, соответствующую пробелу c абака $N^{b(m)}$. Если бы $[S(m(\nu) : D^{m(\mu)}] = 0$, то в силу формулы (7.4) по лемме 3.10, примененной в случае

$$r := n - 1, \lambda := m(\nu_B), \alpha := \overline{H}, k := 2, \text{B}_1 := C, \text{B}_2 := B^{(m)}, \gamma := m(\mu),$$

мы получили бы противоречие $m(\mu) = m(\nu_B)^C = P(N^{c(b(m))})$. Поэтому $[S(m(\nu) : D^{m(\mu)}] > 0, m(\nu) \leq m(\mu)$ и $m(\nu) \leq m(\mu)$.

О расширениях и правилах ветвления модулей

149
Случай 1.2: \(m(\mu) = P(N_{b_{(m)}}^c) \). В случае нарушения одного из условий \(R = 2 \) или \(Q = 0 \) абак \(N_{b_{(m)}}^c \) содержит следующие нормальные бусинки, не лежащие в столбце \(H - R : b_{(m)}^p \rangle - 1 \) в случае \(R > 2 \), бусинку множества \(H, S_2, Q \), лежащую в столбце \(H - 1 \), в случае \(R = 2 \) и \(Q > 0 \). Следовательно, разбиение \(m(\mu) = P(N_{b_{(m)}}^c) \) содержит нормальные клетки вычета, отличного от \(\overline{H} = \overline{H} = -\alpha \), что есть противоречие.

Имеем \(x = 2 \), \(h(\nu) = H > 2 \), \(\nu = \frac{1}{1} \) и

\[
N = (\langle -\infty, H - 2 + p \rangle \cup \langle H - 1 + p \rangle \cup \langle H + p, 2p \rangle \cup \langle H - 2 + 2p, H + 2p \rangle),
\]

\[
N_{b_{(m)}}^c = (\langle -\infty, H - 2 + p \rangle \cup \langle H + p, 2p \rangle \cup \langle H - 2 + 2p, H - 1 + 2p \rangle).
\] (7.5)

Отсюда видно, что \(m(\mu) = (H^2, 2^{p-H}) = \lambda(p-H+2,2,2) \). По лемме 6.6 получаем \(\mu = \lambda(1-H,2,2,2 \rangle, что противоречит условию теоремы.

Случай 2: \(R = 1 \). Так как \(x > 1 \), то \(Q > 0 \). При доказательстве леммы 6.3 было показано, что \(q_{x+2} < b_{x-Q+1} < b_{x-Q} \). Обозначим через \(b_{(m)} \) элемент множества \(H, S_1, Q \), лежащий в столбце \(H \). Так как \(Q > 0 \), то эта бусинка нормальная в \(N \). Легко видеть, что других нормальных бусинок абака \(N \) в столбце \(H \) нет. Следовательно, \(b_{(m)}^p \rangle - хорошая бусинка абака \(N \), ей соответствует клетка \(B_{(m)}^p \) и \(P(N_{b_{(m)}}^c) = m(\nu p_{b_{(m)}}) = m(\nu B) \).

Всеми начальными пробелами абака \(N_{b_{(m)}}^c \), лежащими в столбце \(H \), являются следующие: \(b_{(m)} \); \(H \); \(b_{x-Q+p-H+1} \) в случае \(p - H + 1 \mid x - Q + 1 \). В последнем случае пробел \(b_{x-Q+p-H+1} \) не кономерал в \(N_{b_{(m)}}^c \), так как \(b_{(m)} \leq a_{Q+p-2} < b_{x-Q} \). Положим \(c = H \). Так как \(Q > 0 \), то \(c < b_{(m)} \). Таким образом, всеми кономеральными пробелами абака \(N_{b_{(m)}}^c \), лежащими в столбце \(H \), являются \(b_{(m)} \) и т.д. Обозначим через \(c \) добавляемую клетку разбиения \(m(\nu B) \), соответствующую пробелу \(c \) абака \(N_{b_{(m)}}^c \).

Случай 2.1: \(m(\mu) \neq P(N_{b_{(m)}}^c) \) рассматривается аналогично случаю 1.1.

Случай 2.2: \(m(\mu) = P(N_{b_{(m)}}^c) \). Имеем \(h(m(\mu)) = 2p - H + 1 \) и \(h(\mu) \leq H - 1 \). Отсюда \(e(N_{b_{(m)}}^c) \leq h(\mu) + h(m(\mu)) \leq 2p \). Понятно, что такое может произойти только, если \(b_{(m)} = a_{Q+p-2} = H + p \). (Рассуждения, аналогичные доказательству леммы 6.3). В этом случае

\[
N_{b_{(m)}}^c = (\langle -\infty, H - 1 \rangle \cup \langle H, H + p \rangle \cup \langle p + H - 1, S_2, x - Q \rangle)
\] (7.6)

и \(m(\mu) = P(N_{b_{(m)}}^c) \), -p-сингулярное разбиение, что есть противоречие.

Таким образом, после рассмотрения всех возможных случаев мы доказали, что \(m(\nu) \leq m(\mu) \). Имеем \(h(\mu) < h(\nu) < p \) и \(h(m(\mu)) \leq h(m(\nu)) \). В силу формул (6.2) и (6.3) получаем

\[
h(\mu) + h(m(\mu)) < h(\nu) + h(m(\nu)) = e(\nu) + [p \not\in e(\nu)] \leq 2p.
\]

Следовательно, \(\mu \) удовлетворяет системе (7.3) и по лемме 7.2 имеем \(\mu = \lambda(h', i, x) \), где \(0 < i < h' \), \(x \) и \(h' < p \). Так как единственная нормальная клетка разбиения \(\lambda(h', i, x) \) имеет вычет \(-\overline{R} \), то по условию текущей теоремы получаем \(-\overline{R} = \alpha = \overline{R} - \overline{R} \). Так как \(0 < H - R < p \), то \(-p < H - R - h' < p \). Из того, что \(H - R - h' \) делится на \(p \), получаем \(h' = H - R = h \).
Выполнение части 2) условия $\pi(H, x, i)$ следует из $m(\nu) \leq m(\mu)$ и теоремы 6.8. Докажем выполнение части 1) условия $\pi(H, x, i)$. Для этого достаточно показать, что $H, x > 2$.

Действительно в случае $H = 2$ мы получаем $h = 1, x$ - нечетное число больше 2 и $\nu = ((x + 1)p/2, (x - 1)p/2), \mu = (px)$. В силу леммы 3.5 (iv) из [17] получаем $x = 2p - 1$ и $(\nu, \mu) = ((2p^2, 2p^2 - p), (2p^2 - p)),$ что есть противоречие.

В случае $x = 2$ легко видеть, что часть 2) условия $\pi(H, x, i)$ не выполняется вопреки доказанному.

Лемма 7.8. Справедливо следующее:

а) $\text{Ext}^1_{\Sigma^2 p}(D(p^2, 2p^2 - p), D(2p^2 - p)) \cong K$;

б) $\text{Ext}^1_{\Sigma^2 p}(\lambda, \lambda(2, 2)) \cong K$, где $2 < H < p$.

Доказательство. а) Следует из леммы 3.5 (iv) работы [17].

б) Из формулы (7.5) и леммы 6.3 видно, что $m(\lambda(2, 2)) = \lambda(2^h - 2, 2)$. Отсюда по теореме 4.6 получаем

$$K \cong \text{Ext}_1^{\Sigma^2 p}(\lambda, \lambda(2, 2)) \cong \text{Ext}_1^{\Sigma^2 p}(\lambda, \lambda(2, 2)).$$

По лемме 6.6 имеем $m(\lambda(2^h - 2, 2)) = m(\lambda(2^h - 2, 2)) = \lambda(2^h - 2, 2)$(см. случай 1.2 доказательства предыдущей леммы). Подставляя это значение в формулу (7.7), получаем требуемую эквивалентность.

§8. Оценка сверху

8.1. Общая конструкция. Модифицируем метод п. 4.1, чтобы сделать его применимым к почти вполне расщепленным разбиениям.

Пусть X - множество, удовлетворяющее тем же условиям, что и в п. 4.1, и в нем из каких-либо дополнительных соображений известно отображение $\zeta: X \to Z'$ такое, что

$$\dim \text{Ext}^1_{\Sigma(p)}(D^\nu, D^\mu) \leq \zeta(\nu, \mu)$$

для любой пары $(\nu, \mu) \in X$ разбиений числа n. (8.1)

Построим отображение $U: X \to Z'$ по индукции следующим образом. Положим $U(\emptyset, \emptyset) = 0$. Пусть теперь (ν, μ) - пара непустых разбиений из X. Для каждой μ-орешек клетки A положим $m_A(\nu, \mu)$ равным следующему числу:

1) $\varepsilon(\nu, \mu_A)$, если не существует ν-орешек клеток вычета $\text{res} A$;

2) $U(\nu_B, \mu_A) + \varepsilon(\nu, \mu_A)$, если существует ν-орешек клетка B вычета $\text{res} A$ и $(\nu_B, \mu_A) \in X$;

3) $+\infty$, если существует ν-орешек клетка B вычета $\text{res} A$ и $(\nu_B, \mu_A) \notin X$.

Положим $U(\nu, \mu) = \min \{\{\zeta(\nu, \mu)\} \cup \{m_A(\nu, \mu) : A - \mu$-орешек клетка\}.

Лемма 8.1. Пусть $(\nu, \mu) \in X$. Тогда $\dim \text{Ext}^1_{\Sigma(n)}(D^\nu, D^\mu) \leq U(\nu, \mu)$, где $\nu, \mu \vdash n$.

Доказательство получается индукцией по n с использованием леммы 3.2.
8.2. Случай почти вполне расцепляемых разбиений. До конца пара-граfa положим

\[X = \{ (\nu, \mu) : \nu \text{ почти вполне расцепляемо, } \mu \text{ } p\text{-регулярно, } \nu \not\sim \mu, \nu \sim \mu \}. \]

Зададим \(\zeta \) следующим способом. Пусть \((\nu, \mu)\) пара разбиений числа \(n \) из \(X \).
Положим \(x = n/p \) и \(H = h(\lambda) \), где \(\lambda \) - прообраз \(\nu \). Определим \(\zeta(\nu, \mu) = +\infty \) за исключением следующих случаев:

1) \(\mu \not\sim \nu \), положим \(\zeta(\nu, \mu) = 0 \);
2) \(\mu \not\sim \nu \) и пара \((\nu, \mu)\) минимальная,
 2.1) \((\nu, \mu) = ((\nu^2, \nu^2 - p), (\mu^2 - p)) \), положим \(\zeta(\nu, \mu) = 1 \);
 2.2) \((\nu, \mu) = (\lambda(H, 2), \lambda(H - 2, 2)) \), где \(H > 2 \), положим \(\zeta(\nu, \mu) = 1 \);
 2.3) случаи 2.1) и 2.2) не реализуются и не существует числа i, такого, что
 \(\nu = \lambda(H, x), \mu = \lambda(H - \min(x, H), i, x) \) и \(\pi(H, x, i) \) выполнено, положим
 \(\zeta(\nu, \mu) = 0 \).

То, что для таким образом определенного \(\zeta \) выполнено свойство (8.1), следует из утверждения 2.2 и лемм 7.7 и 7.8.

Теорема 8.2. Пусть \(\nu, \mu \) - \(p\)-регулярные разбиения числа \(n \) такие, что
число \(\nu \sim \text{ почти вполне расцепляемое } \nu \not\sim \mu \). Тогда \(\text{Ext}_{\Sigma_{n}}^1(D^\nu, D^\mu) = 0 \), за исключением случая, когда \(\mu = \mathcal{H}_c(\lambda) \), где \(\lambda \) - прообраз \(\nu \), \(H = h(\lambda) \) и выполнено одно из условий:

1) \(H = 2 \) и \(\varepsilon = (1, -1, (p, p), (p, p)); \)
2) \(H = 3 \) и \(\varepsilon = (0, -1, 1, (-1, 1, 0, (1, -1, 1)); \)
3) \(H > 3 \) и \(\varepsilon = (0, -1, 0H^{-3}, 1, (-1, 0H^{-3}, 1, 0), (1, -1, 0H^{-4}, 1, 1); \)
4) \(\varepsilon = \varepsilon(H, x, i) \) для \(x \) и \(i \) таких, что условие \(\pi(H, x, i) \) выполнено.

В случаях 1)-3) имеем \(\text{Ext}_{\Sigma_{n}}^1(D^\nu, D^\mu) \leq 1 \).

Доказательство. В силу утверждения 2.3 достаточно считать, что \(\nu \sim \mu \). Используя достаточное доказательство, что \(U(\nu, \mu) = 0 \) для любой пары \((\nu, \mu) \in X \), за исключением случаев 1)-4), и что \(U(\nu, \mu) \leq 1 \) в случаях 1)-3). Проведем индукцию по \(n \). В случае \(n = 0 \) имеем \(U(\nu, \mu) = 0 \) по определению.

Пусть теперь \(n > 0 \) и теорема верна для разбиений чисел, меньших чем \(n \). Выбереем некоторые абаки \(M \text{ и } A \) одинаковых смешений такие, что \(\mu = P(M) \text{ и } \lambda = P(A) \).

Случай 1: \(\mu \not\sim \nu \). Тогда \(U(\nu, \mu) = \zeta(\nu, \mu) = 0 \).

Случай 2: \(\mu \not\sim \nu \) и пара \((\nu, \mu)\) не минимальная. Пусть \(A \) - такая \(\mu\)-хорошая клетка, что либо не существует \(\nu\)-хорошей клетки \(\nu \) в \(A \), либо такая клетка \(B \) существует и \(\nu \) - почти вполне расцепляемое разбиение. Обозначим через \(a \) бусину абака \(M \), соответствующую клетке \(A \).

Рассмотрим сначала случай \(\varepsilon(\nu, \mu) = 1 \). Тогда \(A = (M_a) c \) для некоторого конноморфального пробела \(c \) абака \(M_a \). Так как \(\nu \sim \mu \) и \(\nu \not\sim \mu \), то \(a \) и \(c \) лежат в одном столбце, причем \(a \) ниже, чем \(c \). Имеем \(M = (A_c)^\mu \).

В случае \(H = 2 \) получаем \(c = b^A - p, a = b^A + p \text{ и } b^A = b^A = 1 \). Отсюда \(M = \{b^A - p, b^A + p\} \).

В случае \(H > 3 \) получаем либо \(c = b^A - p, a = b^A + p \text{ и } b^A = b^A = 1 \), либо \(c = b^A = 1, a = b^A = 1 \text{ и } b^A = 1 \). В первом случае \(M = \mathcal{H}_{(1, -1, 1)}(A) \), а во втором случае \(M = \mathcal{H}_{(1, -1, 1)}(A) \).

Заметим, что во всех случаях единственной бусиной абака \(A \), лежащей в этом же столбце, что и \(a \), является бусина \(c \), которая
не нормальная. Поэтому не существует ν-хороших клеток вычета $\operatorname{res} A$ и $U(\nu, \mu) \leq m_A(\nu, \mu) = \varepsilon(\nu, \mu) = 1$.

Будем теперь считать, что $\varepsilon(\nu, \mu_A) = 0$. Если не существует ν-хороших клеток вычета $\operatorname{res} A$, то $U(\nu, \mu) = m_A(\nu, \mu) = 0$. Поэтому будем считать, что существует ν-хорошая клетка B вычета $\operatorname{res} A$. В силу выбора клетки A разбиение ν_B почти вполне расшеплением. Применяя лемму 4.3, b), получаем $\nu_B \neq \mu_A$, откуда $(\nu_B, \mu_A) \in X$. Отсюда $U(\nu, \mu) \leq m_A(\nu, \mu) = U(\nu_B, \mu_A)$. Поэтому далее мы будем рассматривать случай $U(\nu_B, \mu_A) > 0$.

Пусть b - бусинка абака Λ, соответствующая клетке B. В случае $\chi(\lambda) = p$ бусинка b отлична от наибольшей бусинки абака Λ (т. е. $r(\Lambda) > 1$), так как иначе наибольшая бусинка абака Λ_b, равная $b-1$, не поднимается, что противоречит тому, что ν_B - почти вполне расшепляемое разбиение. Отсюда имеем $\nu_B = \lambda_{d'}$, где D - ν-хорошая клетка (см. определение \mathcal{K}_c или лемму 8 из [5]).

Положим $\overline{H} = h(\lambda_{d'})$. В силу индуктивного предположения $\mu_A = \mathcal{K}_c(\lambda_{d'})$, где ε - выбор, описанный случаями 1)-4) данной теоремы, в которых H заменено на \overline{H}. Так как $\sum_{i=1}^{\overline{H}} \varepsilon_i = 0$, то $M_A = \mathcal{K}_c(\lambda_{d'})$, где d - бусинка абака Λ, соответствующая клетке D.

Напомним, что a и d - сочтённые пробелы абаков M_a и $\lambda_{d'}$ соответственно, так как a и d - хорошие бусинки абаков M и Λ соответственно. Так как $\varepsilon = (0)^{\overline{H}}$, то $\varepsilon_j < 0$ для некоторого $1 \leq j \leq \overline{H}$. Отсюда $e \leq b^{A_k}(j) - p$, где e - наибольший пробел абака $\lambda_{d'}$. Следовательно, $d \neq e$, так как иначе мы получили бы $b_{\lambda_A} = b^{A_k}$, $b_{\lambda_A} = e$, $b^{A_k} - b_{\lambda_A} \geq b^{A_k}(j) - e = 0$, что противоречит вполне расшепляемости абака Λ. Отсюда $H = \overline{H}$.

Имеем $d = b^{A_k}(k) + 1 < b_{\lambda_A} + p$, так как пробел $b_{\lambda_A} + p$ - не конормальный пробел абака $\lambda_{d'}$. Легко видеть, что единственным конормальным пробелом абака M_a, равным $\mathcal{K}_c(\lambda_{d'})$, лежащим в том же столбцe, что и d, является пробел $b^{A_k}(k) + pe_{k} + 1$. Отсюда $a = b^{A_k}(k) + pe_{k} + 1, M_A = \mathcal{K}_c(\lambda_A)$ и $U(\nu, \mu) \leq 1$ в случаях 1)-3).

Случай 3: $\mu > \nu$ и пара (ν, μ) минимальная. Требуемое утверждение следует из определения U и ζ.

Общий вид наборов $\varepsilon(H, x, i)$ выглядит достаточно запутанно. Однако имеет место следующее утверждение.

Лемма 8.3. Пусть H - целое число такое, что $(p + 3)/2 \leq H < p$. Тогда $\pi(H, x, i)$ выполнено тогда и только тогда, когда $x = QH + 1, \ Q \in Z, \ Q \geq 1$ и $i = H - 1$. В этом случае $\varepsilon(H, x, i) = (-Q - 1, \overline{Q}^{H-1-r}, \overline{Q} + 1)\overline{r}$, где $\overline{Q} = \text{quo}(Q + 1, H - 1)$ и $r = \text{rem}(Q + 1, H - 1)$.

Доказательство. Предположим, что $\pi(H, x, i)$ выполнено. Воспользуемся обозначениями определения 7.4. Положим

$$\delta = H - Q - 1 + h \left[\frac{x - Q - 1}{p - H + 1} \right] + (R - 1) \left[\frac{x - Q - 2}{p - H + 1} \right] - m \left[\frac{p - h + x - 1}{p - m} \right].$$

Предположим, что $R > 2$. Учитывая, что $m \leq h$, имеем

$$\delta \geq h \left[\left(\frac{x - Q - 1}{p - H + 1} - \frac{x - 1}{p - H + 2} \right) \right] + \left(\left[\frac{x - Q - 2}{p - H + 1} + 1 \right] - \left[\frac{x}{H} \right] \right) + R - 2.$$
Для получения противоположения с условием 2) определения 7.4 достаточно доказать, что обе разности в круглых скобках неотрицательны. Это следует из следующих неравенств

\[
\frac{x - Q - 1}{p - H + 1} - \frac{x - 1}{p - H + 2} = \frac{x - 1 - Q(p - H + 2)}{(p - H + 1)(p - H + 2)} = \frac{Q(2H - (p + 2)) + R - 1}{(p - H + 1)(p - H + 2)} > 0, \\
\frac{x - Q - 2}{p - H + 1} + 1 - \frac{x}{H} = \frac{(2H - (p + 2))x + H(p - 1 - H) + R}{H(p - H + 1)} > 0.
\]

Теперь предположим, что \(R = 2 \). Тогда \(Q \geq 1 \). Имеем

\[
\delta \geq h\left(\left[\frac{x - Q - 1}{p - H + 1} \right] - \left[\frac{x - 1}{p - H + 2} \right] \right) + \left(\left[\frac{x - Q - 2}{p - H + 1} \right] - \left[\frac{x}{H} \right] \right) + R - 1.
\]

То, что разность в первой паре круглых скобок неотрицательна, показывается так же, как и выше. Имеем

\[
\frac{x - Q - 2}{p - H + 1} - \frac{x}{H} = \frac{(2H - (p + 3))x + H(Q - 2) + 4}{H(p - H + 1)}.
\]

Последнее выражение и, следовательно, разность во второй паре круглых скобок неотрицательны в случае \(Q \geq 2 \). Если \(Q = 1 \), то \(x = H + 2 \) и мы имеем

\[
\left[\frac{x - Q - 2}{p - H + 1} \right] - \left[\frac{x}{H} \right] = \left[\frac{H - 1}{p - H + 1} \right] - \left[\frac{H + 2}{H} \right] = \left[\frac{H - 1}{p - H + 1} \right] - 1 \geq 0.
\]

Имеем

\[
\delta \geq H - Q - 1 + h\left[\frac{x - Q - 1}{p - H + 1} \right] - (H - 2)\left[\frac{p - H + x}{p - H + 2} \right] \\
= h\left(\left[\frac{x - Q - 1}{p - H + 1} \right] - \left[\frac{x - 2}{p - H + 2} \right] \right) + \left(\left[\frac{x - 2}{p - H + 2} \right] - \left[\frac{x}{H} \right] \right) + 1.
\]

Разность в первой паре круглых скобок правой части неотрицательна, так как

\[
\frac{x - Q - 1}{p - H + 1} - \frac{x - 2}{p - H + 2} = \frac{x - 2 - (Q - 1)(p - H + 2)}{(p - H + 1)(p - H + 2)} = \frac{(Q - 1)(2H - (p + 2)) + H - 1}{(p - H + 1)(p - H + 2)} > 0.
\]

Имеем

\[
\frac{x - 2}{p - H + 2} - \frac{x}{H} = \frac{(2H - (p + 2))x - 2H}{H(p - H + 2)} = \frac{(2H - (p + 3))x + H(Q - 2) + 1}{H(p - H + 2)}.
\]
Последнее выражение и, следовательно, разность во второй паре круглых скобок неотрицательны в случае \(Q \geq 2 \). Если \(Q = 1 \), то \(x = H + 1 \) и мы имеем

\[
\left[\frac{x - 2}{p - H + 2} \right] - \left[\frac{x}{H} \right] = \left[\frac{H - 1}{p - H + 2} \right] - \left[\frac{H + 1}{p - H + 2} \right] = -1 \geq 0.
\]

Приходим к противоречию с условием 2) определения 7.4.

Наконец, для \(x = QH + 1 \) и \(i = H - 1 \), где \(Q \) - любое целое положительное число, имеем

\[
\delta = h \left(\left[\frac{x - 1 - Q}{p - H + 1} \right] - \left[\frac{x - 1}{p - H + 1} \right] \right) - Q < 0,
\]

откуда следует, что условие \(\pi(H, x, i) \) выполнено. Легко проверить, что \(\varepsilon(H, x, i) \) задается именно предложенной формулой.

§ 9. Приложения к правилам ветвления

9.1. Предшаровые факты. В следующем утверждении, непосредственно вытекающем из теорем Е и Е' работы [4], \(\text{Res}_\alpha 0 \) надо понимать как 0.

УТВЕРЖДЕНИЕ 9.1. Пусть \(\lambda = p \)-регулярное разбиение и \(\alpha \in \mathbb{Z}_p \).

1) Если не существует \(\lambda \)-нормальных (\(\lambda \)-конормальных) клеток вычета \(\alpha \), то \(\text{Res}_\alpha D^\lambda = 0 \) (\(\text{Ind}^\alpha D^\lambda = 0 \)).

2) Если существует ровно одна \(\lambda \)-нормальная (\(\lambda \)-конормальная) клетка \(A \) вычета \(\alpha \), то \(\text{Res}_\alpha D^\lambda \cong D^\lambda A \) (\(\text{Ind}^\alpha D^\lambda \cong D^\lambda A \)).

Лемма 9.2. Пусть \(M - \) модуль такой, что \(\text{head} M \cong \text{soc} M \) и \(N_1, \ldots, N_k \) - попарно неизоморфные простые модули такие, что \([M : N_i] = 1, i = 1, \ldots, k \). Тогда либо \(M \cong \bigoplus_{i=1}^k N_i \), либо существует простой модуль \(N \), не изоморфный ни одному из \(N_1, \ldots, N_k \), такий, что \(\text{Hom}(M, N) \neq 0 \).

ДОКАЗАТЕЛЬСТВО. Предположим, что такого модуля \(N \) не существует. Докажем индукцией по \(n = 0, \ldots, k \), что существует подмодуль \(S_n \subset \{1, \ldots, k\} \) мощности \(n \) такое, что \(\bigoplus_{i \in S_n} N_i \) изоморфен подмодулю \(M \). Множество \(S_0 = \emptyset \) отвечает случаю \(n = 0 \). Пусть теперь \(0 < n < k \) и \(i : \bigoplus_{i \in S_n} N_i \rightarrow M \) - вложение модулей. Так как \([S_n] < k \), то \(\text{Ind}^i M \neq M \) и существует максимальный подмодуль \(M_0 \) модуля \(M \), содержащий \(\text{Ind}^i M \). В силу нашего предположения \(M/M_0 \cong N_j \) для некоторого \(j \in \{1, \ldots, k\} \setminus S_n \). Так как \(\text{head} M \cong \text{soc} M \), то можно положить \(S_{n+1} = S_n \cup \{j\} \).

Имеем \(S_k = \{1, \ldots, k\} \). Из нашего предположения, сделанного в начале доказательства, получаем \(M \cong \bigoplus_{i=1}^k N_i \).

Лемма 9.3. Пусть \(\lambda - \) разбиение высоты менее \(p \) и \(B - \lambda \)-добавляемая клетка такая, что \(\lambda^B - p \)-сингулярное разбиение. Тогда \(\lambda = (1^{p-1}) \) и \(B = (p, 1) \).

ДОКАЗАТЕЛЬСТВО. Так как \(h(\lambda^B) \leq p \) и \(\lambda^B - p \)-сингулярное разбиение, то \(\lambda^B = (k^p) \). Имеем \(k = (\lambda^B)_p = 1 \) и \(B = (p, 1) \).

Теорема 9.4. Пусть λ – вполне расцепляемое разбиение чисел i и $\alpha \in \mathbb{Z}_p$. Предположим, что существует более одной λ-конормальной клетки вычета α. Тогда таких клеток две. Обозначим их A и B, где A лежит выше B. Имеем (в группе Грохеника кольца $K \Sigma_{n+1}$)

$$[\text{Ind}_\alpha D^\lambda] = \begin{cases} 2[D^{\lambda A}] + [D^{\lambda B}], & \text{если } h_{1,1}(\lambda) \neq p - 1 \text{ или } p > 2, \lambda = (p - 1); \\ 2[D^{\lambda A}] + [D^{\lambda B}] + [D^{\lambda A}], & \text{если } h_{1,1}(\lambda) = p - 1 \text{ и } \lambda \neq (1^{p-1}), (p - 1); \\ 2[D(2^{1p-2})] + [D(3^{1p-3})], & \text{если } p > 2 \text{ и } \lambda = (1^{p-1}); \\ 2[D(2)], & \text{если } p = 2 \text{ и } \lambda = (1). \end{cases}$$

Доказательство. То, что таких клеток две, следует из того, что все собственные бусинки любого абаака разбиения λ лежат в разных столбцах. Положим $\nu = \lambda A$. Легко видеть, что разбиение ν вполне расцепляемое, A – ν-хорошая клетка и $h(\lambda) = h(\nu)$. Предположим, что утверждение теоремы неверно.

Рассмотрим снова случай, когда $h_{1,1}(\lambda) \neq p - 1$ или $p > 2$, $\lambda = (p - 1)$. Тогда λ^B p-регулярно в силу леммы 9.3 и $[\text{Ind}_\alpha D^\lambda : D^\lambda] = 1$. Применяя лемму 9.2 в случае

$$M := \text{rad Ind}_\alpha D^\lambda / \text{soc Ind}_\alpha D^\lambda, \quad k := 1, \quad N_1 := D^\lambda B$$

и учитывая $[\text{Ind}_\alpha D^\lambda : D^{\lambda A}] = 2$, получаем, что существует модуль D^γ, не изоморфный ни $D^{\lambda A}$, ни $D^{\lambda B}$, такой, что $\text{Hom}_{\Sigma_{n+1}}(\text{rad Ind}_\alpha D^\lambda, D^\gamma) \neq 0$.

По лемме 3.10 получаем $0 < [\text{Ind}_\alpha D^\lambda : D^\gamma] \leq 2[S^{\lambda A} : D^\gamma]$ и, следовательно, $\nu = \lambda A < \gamma$. Отсюда $\lambda \neq (p - 1)$ и, следовательно, $h_{1,1}(\lambda) \neq p - 1$, $h(\nu) > 1$ и $p > 2$. Так как $\text{head Ind}_\alpha D^\lambda \cong D^\nu$, то $\text{Ext}^{1}_{\Sigma_{n+1}}(D^\nu, D^\gamma) = 0$. По теореме 4.6 получаем $\gamma = \nu$. Имеем $h(\lambda) = h(\nu) > 1$ и $\nu \leq h_{1,1}(\nu) \leq h_{1,1}(\lambda) + 1$ по лемме 4.5. С учетом $h_{1,1}(\lambda) \neq p - 1$ получаем $h_{1,1}(\lambda) \geq p$ и, следовательно, $\lambda - \lambda$ – большое разбиение. Отсюда $\tilde{\nu} = \tilde{\lambda} C$, где $C - \tilde{\nu}$-хорошая клетка вычета α. Так как $\text{Ext}^{1}_{\Sigma_{n+1}}(S^{\nu}, D^\delta) = 0$ в силу утверждения 2.1, то по лемме 3.7

$$1 \leq \dim \text{Hom}_{\Sigma_{n+1}}(\text{rad Ind}_\alpha D^\lambda, D^\gamma) = \dim \text{Hom}_{\Sigma_{n+1}}(\text{rad Ind}_\alpha D^{\nu A}, D^\delta) \leq \varepsilon(\nu, \tilde{\nu} C) = \varepsilon(\lambda, \tilde{\lambda}).$$

Отсюда $\lambda^A = \tilde{\lambda} B$. Такое возможно только, если $r(A) = 1$ и $\chi(\lambda) = p$. Приходим к противоречию с тем, что $A - \lambda$-конормальная клетка.

Теперь рассмотрим случай, когда $h_{1,1}(\lambda) = p - 1$ и $\lambda \neq (1^{p-1}), (p - 1)$. Имеем $p > 2$, $n \geq 2$ и $A = (1, \lambda_1)$. Положим $\lambda^A = (\lambda_1, 1)$. Имеем $(\lambda^A)^A = (\lambda^A)^t$. Так как $\lambda - p$-ядро, то по лемме 5.2 из [7] получаем $m(\lambda) = \lambda^t$. По лемме 11 из [5] имеем $m((\lambda^A)^t) = \lambda^A$. В силу теоремы E(iv) работы [4] и утверждения 7.3 получаем

$$1 = [D^{\lambda A} \uparrow_{\Sigma_{n+1}} : D^{(\lambda A)^A}] = [D^{\lambda A} \uparrow_{\Sigma_{n+1}} \otimes \text{sgn}_{n+1} : D^{(\lambda A)^t} \otimes \text{sgn}_{n+1}] = [D^m(\lambda^A) \uparrow_{\Sigma_{n+1}} : D^m((\lambda A)^t)] = [D^{\lambda A} \uparrow_{\Sigma_{n+1}} : D^{\lambda A}] = [\text{Ind}_\alpha D^\lambda : D^{\lambda A}].$$
В рассматриваемом случае \(\lambda^B - p\)-регулярное разбиение и \(\text{Ind}^\alpha D^\lambda : D^\lambda B_t = 1. \) Применяя лемму 9.2 в случае

\[
M := \text{rad} \text{Ind}^\alpha D^\lambda / \text{soc} \text{Ind}^\alpha D^\lambda, \quad k := 2, \quad N_1 := D^\lambda B, \quad N_2 := D^\lambda A
\]

и учитывая \(\text{Ind}^\alpha D^\lambda : D^\lambda A \) = 2, получаем, что существует модуль \(D^\gamma \), не изоморфный ни одному из модулей \(D^\lambda B, D^\lambda A, D^\lambda A \), такой, что

\[\text{Hom}_{\mathbb{S}_{n+1}}(\text{rad} \text{Ind}^\alpha D^\lambda, D^\gamma) \neq 0. \]

Так как \(\text{head} \text{Ind}^\alpha D^\lambda \cong D^\lambda A \), то \(\text{Ext}^1_{\mathbb{S}_{n+1}}(D^\lambda A, D^\gamma) \neq 0 \). Аналогично предыдущему случаю до леммы 3.10 имеем \(\lambda^A < \gamma \). Отсюда по теореме 4.6 получаем противоречие \(\gamma = \lambda^A \).

В случае \(p > 2 \), умножая уже полученную формулу \(\text{Ind}^\alpha D^{(p-1)} \cong 2[D(p)] + [D^{(p-1)}] \) на \(\text{sgn}_p \) и применяя утверждение 7.3, получаем

\[\text{Ind}^\alpha D^{(1)} = 2[D(2)] \] в случае \(p = 2 \) получается сравнением размерностей.

Теорема 9.5. Пусть \(\lambda \) – вполне расщепляемое разбиение числа \(n \), отличное от \((1^{p-1}) \), и \(\alpha \in \mathbb{Z}_p \). Обозначим через \(B \) начальную \(\lambda \)-добавляемую клетку (т.е. лежащую в первом столбце). Предположим, что существует более одной \(\lambda^B \)-нормальной клетки вычета \(\alpha \). Тогда кроме \(B \) существует только одна такая клетка \(A \). Имеем \(\text{Res}_\alpha D^\lambda B \cong \text{Ind}^\alpha D^\lambda A \).

Доказательство. Пусть \(B_1, \ldots, B_k \) – все клетки, отличные от \(B \). Так как существует более одной \(\lambda^B \)-нормальной клетки вычета \(\alpha \), то \(\text{Res} B, \text{Res} B_1, \ldots, \text{Res} B_k \) попарно различны. Отсюда \(D^\lambda \upharpoonright_{\Sigma_{n+1}} \cong D^\lambda B \oplus D^\lambda B_1 \oplus \cdots \oplus D^\lambda B_k \). Теперь, легко проверить, что единственным непростым неразложимым слагаемым модуля \(D^\lambda \upharpoonright_{\Sigma_{n+1}} \) будет \(\text{Res}_\alpha D^\lambda B \).

Пусть \(A_1, \ldots, A_l \) – все клетки, отличные от \(B \). Вычеты \(\text{Res} A_1, \ldots, \text{Res} A_l \) попарно различные и \(D^\lambda \upharpoonright_{\Sigma_{n-1}} \Rightarrow D^\lambda A_1 \oplus \cdots \oplus D^\lambda A_l \). Единственным непростым неразложимым слагаемым модуля \(D^\lambda \upharpoonright_{\Sigma_{n-1}} \) является \(\text{Ind}^\alpha D^\lambda A \).

В силу теоремы о подгруппах (44.2) из [1], примененной к \(G := \Sigma_{n+1}, R = S := \Sigma_n \) и \(L := D^\lambda \), имеем \(D^\lambda \upharpoonright_{\Sigma_{n+1}} \cong D^\lambda \upharpoonright_{\Sigma_{n-1}} \cong D^\lambda \upharpoonright_{\Sigma_{n-1}} \oplus D^\lambda \). Следовательно, по теореме Крукли-Шимпта \(\text{Res}_\alpha D^\lambda B \cong \text{Ind}^\alpha D^\lambda A \).

9.3. Индуцирование некоторых почти вполне расщепляемых модулей.

Теорема 9.6. Пусть \(\lambda \) – большее разбиение числа \(n \) высоты \(H \geq (p + 3)/2 \) и \(\alpha \in \mathbb{Z}_p \) такое, что \(h_{2, 1}(\lambda) \neq p - 1 \) и условие \(\lambda_t = -h(\lambda) = \alpha \) нарушено. Предположим, что существует более одной \(\lambda \)-нормальной клетки вычета \(\alpha \). Тогда таких клеток две. Обозначим их \(A \) и \(B \), где \(A \) лежит выше \(B \). Имеем \(\text{Ind}^\alpha D^\lambda A = 2[D^\lambda A] + [D^\lambda A] \) (в группе Гроссенбека кольца \(K \Sigma_{n+1} \)).
Доказательство. Рассуждая, как при доказательстве теоремы 9.4, получаем, что таких клеток две. Пусть $\lambda - \text{абак разбиения } \lambda \text{ ис его наименьший пробел. Обозначим через } a \text{ и } b \text{ пробелы а бака } \lambda, \text{ соответствующие клеткам } A \text{ и } B \text{ соответственно. Случай } h(\lambda) < h(\lambda) \text{ невозможен, так как мы получили бы } c = b^{\lambda} - p, \text{ что противоречит существованию } \lambda \text{ более одного начального пробела в одном столбце. Следовательно, } h(\lambda) = h(\lambda) \text{ и } c = b. \text{ Отсюда получаем, что } \lambda \text{ не является расщеплением, в частности, } \lambda \neq (1^{p-1}). \text{ В силу леммы } 9.3 \text{ получаем, что } \lambda^D = p-\text{регулярное разбиение. }

Так как } \text{res } A = \text{res } B \text{ и условие } \lambda = -h(\lambda) = \alpha \text{ нарушено, то существует } i = 2, \ldots, H \text{ такое, что в столбце, где лежит } b^{\lambda}(i) + 1, \text{ находится пробел синий одной собственной бусинки а бака } \lambda. \text{ Следовательно, } \lambda^A = \lambda^D, \text{ где } D \text{ - } \lambda \text{-кодорная клетка такая, что } h(\lambda^D) = H. \text{ Поэтому разбиение } \lambda^D \text{ большое. }

Предположим, что утверждение теоремы неверно. Положим } \nu = \lambda^A \text{ и обозначим через } d \text{ пробел а бака } \lambda, \text{ соответствующий клетке } D. \text{ Применяя лемму } 9.2 \text{ в случае }

\[M := \text{rad Ind}^{\alpha} D^{\chi}/\text{soc Ind}^{\alpha} D^{\chi}, \quad k := 1, \quad N_1 := D^H \]

и учитывая } [\text{Ind}^{\alpha} D^{\chi} : D^{\chi^A}] = 2, \text{ получаем, что существует модуль } D^\gamma, \text{ не изоморфный ни } D^{\chi^A}, \text{ ни } D^{\chi^D}, \text{ такой, что } \text{Hom}_{\Sigma_n+1}(\text{Ind}^{\alpha} D^{\chi}, D^\gamma) \neq 0. \text{ По лемме } 3.10 \text{ получаем } 0 < [\text{Ind}^{\alpha} D^{\chi} : D^\gamma] < [S(\chi^A) : D^\gamma] \text{ и, следовательно, } \nu = \lambda^A < \gamma. \text{ Так как } h(\text{Ind}^{\alpha} D^{\chi}) \cong D^\nu, \text{ то } \text{Ext}^{1}_{\Sigma_n+1}(D^\nu, D^\gamma) \neq 0. \text{ По теореме } 8.2 \text{ и лемме } 8.3 \text{ получаем } \gamma = \mathcal{H}_{\epsilon}(\lambda^D) \text{ для } \epsilon, \text{ равному одному из следующих значений: } (0, -1, 0^{H-3}, 1); (-1, 0^{H-3}, 1, 0); (-1, 0^{H-4}, 1, 1); (-Q - 1, Q^{-1} - 1, r, (Q + 1)r), \text{ где } Q \geq 1, Q = \text{qup}(Q + 1, H - 1) \text{ и } r = \text{res}(Q + 1, H - 1).

Если предположить, что } h(\gamma) < H, \text{ то, учитывая непосредственный вид выше перечисленных наборов, которым может быть равен } \epsilon, \text{ мы получили бы } c = b^{\lambda^d} - p \text{ или } c = b^{\lambda^d}(2) - p \text{. Однако первое условие не выполнено, так как } i > 1, \text{ а второе не выполнено, так как } h(\lambda) \neq p - 1. \text{ Отсюда получаем, что } h(\gamma) = H, \text{ существует единственная } \gamma \text{-нормальна клетка } E \text{ вычета } \alpha \text{ и } \mathcal{H}_{\epsilon}(\lambda) = \gamma_E. \text{ Так как } \text{Ext}^{1}_{\Sigma_n+1}(S^\nu, D^\gamma) = 0 \text{ в силу утверждения } 2.1, \text{ то по лемме } 3.7 \text{ получаем}

\[1 \leq \text{dim } \text{Hom}_{\Sigma_n+1}(\text{Ind}^{\alpha} D^{\chi}, D^\gamma) = \text{dim } \text{Hom}_{\Sigma_n+1}(\text{Ind}^{\alpha} D^{\chi^A}, D^\gamma) \leq \epsilon(\lambda^A, \gamma_E). \]

Отсюда получаем } \lambda^A = (\gamma_E)^F, \text{ где } \text{res } F = \alpha. \text{ Понятно, что либо } F = E, \text{ либо } h((\gamma_E)^F) > H. \text{ Первый случай невозможен, так как } \lambda^A < \gamma, \text{ а второй - потому, что } h(\lambda^A) = H.

ЗАМЕЧАНИЕ. Читатель сам может сформулировать и доказать аналог теоремы 9.5 для почти вполне расщепляемых разбиений.

9.4. Гипотезы. Следующие гипотезы сформулированы на основе теоремы 8.2 и вычислений в пределах известных матриц разложения.

Гипотеза 9.7. Пусть } \lambda - \text{ большое разбиение числа } n \text{ высоты } H \text{ и } \alpha \in \mathbb{Z}_p \text{ такие, что условие } \lambda^\chi = -h(\lambda) = \alpha \text{ нарушено. Предположим, что суущес-
тает более одной $\tilde{\lambda}$-конормальной клетки вычета α. Тогда таких клеток две. Обозначим их A и B, где A лежит выше B. Имеет место формула

$$
[\text{Ind}^G D^{\tilde{\lambda}}] = \begin{cases}
2[D^{\lambda_A}] + [D^{\lambda_B}], & \text{если } h_{2,1}(\lambda) \neq p - 1;
2[D^{\lambda_A}] + [D^{\lambda_B}] + [D^{H(1,0)_{-3,1,0}}(\tilde{\lambda})], & \text{если } h_{2,1}(\lambda) = p - 1 \text{ и } H = 2;
2[D^{\lambda_A}] + [D^{\lambda_B}] + [D^{H(0,-1,0)_{-3,1,0}}(\tilde{\lambda})] + [D^{H(1,0)_{-3,1,0}}(\tilde{\lambda})], & \text{если } h_{2,1}(\lambda) = p - 1 \text{ и } H = 3;
2[D^{\lambda_A}] + [D^{\lambda_B}] + [D^{H(0,1)_{-3,1,0}}(\tilde{\lambda})] + [D^{H(1,0)_{-3,1,0}}(\tilde{\lambda})], & \text{если } h_{2,1}(\lambda) = p - 1 \text{ и } H > 3.
\end{cases}
$$

Пример. Пусть $p = 7$ и $\lambda = (5, 4, 2, 2)$. Тогда $\tilde{\lambda} = (6, 4, 2, 1)$ и

$$
[\text{Ind}^G D^{(6,4,2,1)}] = 2[D^{(6,5,2,1)}] + [D^{(6,4,2,1,1)}] + [D^{(6,6,2)}] + [D^{(7,7)}].
$$

Имеем $\lambda_1 = 5 \neq -4 = -h(\lambda) \pmod{7}$, $h_{2,1}(\lambda) = 6$, $A = (2, 5)$, $B = (5, 1)$, $\tilde{\lambda}_A = (6, 5, 2, 1)$, $\tilde{\lambda}_B = (6, 4, 2, 1, 1)$, $H_{(0,1,0)}(\lambda_A) = (6, 6, 2)$, $H_{(0,1,0)}(\lambda_B) = (6, 6, 2)$. Имеет себя λ_A-нормальной клетки вычета α. Тогда кроме A такой клеткой является только коническая λ-удаляемая клетка B. Имеем

$$
[\text{Res}_A D^{\lambda_A}] = \begin{cases}
2[D^{\tilde{\lambda}}] + [D^{\lambda}] + [D^{H(1,0)_{-3,1,0}}(\lambda)]
+ [D^{H(0,1)_{-3,1,0}}(\lambda)], & \text{если } H > 2;
2[D^{\tilde{\lambda}}] + [D^{\lambda}] + [D^{H(1,0)_{-3,1,0}}(\lambda)], & \text{если } H = 2,
\end{cases}
$$

где $x = [h_{2,1}(\lambda) \geq p]$.

Пример. Пусть $p = 5$ и $\lambda = (5, 5, 3)$. Тогда $A = (1, 6)$, $\lambda_A = (6, 5, 3)$ и

$$
[\text{Res}_A D^{(6,5,3)}] = 2[D^{(6,5,2)}] + [D^{(5,5,3)}] + [D^{(9,2,2)}] + [D^{(6,6,1)}].
$$

Имеем $\tilde{\lambda} = (6, 5, 2)$. $H_{(1,0)_{-3,1,0}}(\lambda) = (9, 2, 2)$, $H_{(0,1,0)}(\lambda) = (6, 6, 1)$ и $h_{2,1}(\lambda) = 6$.

Гипотеза 9.9. Если λ - вполне расщепляемое разбиение высоты три такое, что $x_{1,1}(\lambda) = 2p - 1$, то $\text{Ind}^{-3} D^{3\tilde{\lambda}} = 2[D^{\lambda_A}] + [D^{\lambda_B}] + [D^{H(0,1)_{-3,1,0}}(\tilde{\lambda})]$, где $A = (3, \tilde{\lambda}_3 + 1)$ и $B = (4, 1)$.

Пример. Пусть $p = 5$ и $\lambda = (7, 6, 6)$. Тогда $\tilde{\lambda} = (9, 6, 4)$ и

$$
[\text{Ind}^G D^{(9,6,4)}] = 2[D^{(9,6,5)}] + [D^{(9,6,4,1)}] + [D^{(10,10)}].
$$

Имеем $x_{1,1}(\lambda) = 9$, $\lambda_A = (9, 6, 5)$, $\lambda_B = (9, 6, 4, 1)$ и $H_{(0,1,0)}(\lambda) = (10, 10)$. Более того, при помощи известных матриц разложения и теоремы о подгруппах [1; (44.2)] легко проверить гипотезу 9.9 для $p = 5$.

Список литературы

1. Кернинг Ч., Райнер И. Теория представлений изоморфных групп и ассоциативных алгебр. М.: Наука, 1969.