А. В. Забродин, Скрытая квантовая R-матрица в классическом магнетике Гейзенберга с дискретным временем, \textit{ТМФ}, 2000, том 125, номер 2, 179–204

DOI: https://doi.org/10.4213/tmf663

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
13 мая 2019 г., 00:28:03
Скрытая квантовая R-матрица в классическом магнетике Гейзенберга с дискретным временем

С помощью свертки подкручиваемой квантовой тригонометрической R-матрицы 4 × 4 с некоторыми векторами в квантовом пространстве построены локальные M-операторы для интегрируемой версии классического магнетика Гейзенберга в дискретном времени. Компоненты этих векторов отождествлены с t-функциями модели. Существенно используются билинейный формализм Хироты. Предлагаемая конструкция обобщает известное представление M-операторов в моделях с непрерывным временем через операторы Лакса и классическую r-матрицу.

Содержание

1. Введение ... 180
2. Билинейный формализм Хироты .. 184
 2.1. Общий вид трехчленных билинейных уравнений 184
 2.2. Основные билинейные уравнения для дискретной модели МГ 185
3. Линеаризация дискретной модели МГ 188
 3.1. Скалярные линейные задачи .. 188
 3.2. Векторная линейная задача ... 189
 3.3. Уравнение нулевой кризиса для киральных L-операторов 189
 3.4. Антикрайние L-операторы .. 190
4. Составные L- и M-операторы ... 192
 4.1. Составной M-оператор ... 192
 4.2. Составной L-оператор (первая версия) 193
 4.3. Составной L-оператор (окончательная версия) 193
 4.4. Пространственно-временная решетка 195

Статья написана по заказу Редколлегии.

*Объединенный институт химической физики РАН; Институт теоретической и экспериментальной физики, Москва, Россия. E-mail: zabrodin@heron.iep.ru
1. ВВЕДЕНИЕ

Единый подход [1] к нелинейным солитонным уравнениям как к гамильтоновым системам, имеющим достаточное количество сохраняющихся величин в инволюции, основан на понятии классической r-матрицы. Ее роль заключается в унификации свобод Пуассона для матричных элементов оператора Ляна. Существует эквивалентная, хотя и менее популярная точка зрения на r-матрицу, которой мы и собираемся здесь, следовать. Она связана с методом Захарова-Шабата [2], который заключается в представлении солитонных уравнений как условия нулевой кризисы для пары матричных функций (называемых L- и M-операторами), зависящих от спектрального параметра. Классическая r-матрица при этом выступает как некоторый механизм для получения M-операторов из L-операторов.

В работе [3] аналогичное построение для простейшего примера модели синус-Гордона (СГ) на решетке было проделано в полностью дискретном случае, т.е. для дискретных моделей на решетке в дискретном времени. Замечательным представляется тот факт, что в нем участвует квантовая R-матрица с квантовым параметром q, связанным с постоянной решетки дискретного времени. Формула для локальных M-операторов в случае дискретного времени имеет столь же простую структуру, как и в непрерывном случае (см. ниже (1.5)), с R-матрицей вместо r-матрицы. Этот результат получается прямым вычислением. В настоящей работе мы не пытаемся дать объяснение всего, почему такая квантовая R-матрица участвует в целом классической задаче. Наши показания, что эта конструкция работает и для гораздо более общей модели, частично антисимметричной моделей магнетик Гейзенберга (МГ) на решете в дискретном времени (эта модель содержит дискретные версии уравнений СГ, Кортенега де Фриза (КдФ) и др., как специальные случаи). Хотя вновь результата и выглядит как прямое обобщение соответствующего утверждения для модели СГ на решете, его вывод требует значительно более трудосемейных вычислений и некоторых важных модификаций.

Напомним конструкцию M-операторов для непрерывных потоков r-матрицы. Пусть $L_l(z)$ классический L-опператор размерностью 2×2 на единичной решете с периодическим граничным условием $L_{l+N}(z) = L_l(z)$, а z — спектральный параметр. Мы будем предполагать ультраволновую (т.е. свободки Пуассона между элементами $L_l(z)$ на разных узлах равны нулю). Матрица монодромии $T_l(z)$ представляет собой упорядоченное произведение L-операторов по абсциссам на решете начиная с узла l и кончая узлом $l+N-1$:

$$T_l(z) = L_{l+N-1}(z) \ldots L_{l+1}(z) L_l(z).$$

(1.1)
Гамильтонианы коммутирующих потоков получаются как коэффициенты разложения $\ln T(z)$ по z, где $T(z) = tr T(z)$ не зависит от l в силу периодических граничных условий. Все эти потоки допускают представление нулевой кривизны. Производящая функция M-операторов дается формулой [4, 1]

$$ M_l(z; w) = T^{-1}(w) \, tr \left[r \left(\frac{z}{w} \right) (T(w) \otimes I) \right], $$

где $r(z)$ — классическая r-матрица 4×4, действующая в тензорном произведении двух двумерных пространств, tr_1 означает операцию взятия следа в первом пространстве, I — единичная матрица. Разлагая правую часть формулы (1.2) по w, получаем M-операторы, зависящие от спектрального параметра z. С точки зрения гамильтонова подхода условие нулевой кривизны следует из r-матричных свойств Пуассона для элементов L-оператора. Аналогичная r-матричная формула для M-операторов существует также и в неустретаточных моделях, хотя в этом случае r-матрица не является косоуширенной. Вообще говоря, $M_l(z; w)$ — нелокальная величина.

Способ построения локальных M-операторов из производящей функции хорошо известен [5, 1]. Предположим, что существует также значение z_0 спектрального параметра, что $det L_l(z_0) \neq 0$ при любом l. Это означает, что $L_l(z_0)$ является одномерным проектором:

$$ L_l(z_0) = \frac{| \alpha(l) \rangle \langle \beta(l) |}{P(l)}, $$

где $| \alpha \rangle = \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right), \quad \langle \beta | = (\beta_1, \beta_2)$ (1.4)

двухкомпонентные векторы, а $P(l)$ — скалярный неразмерный множитель. Компоненты векторов и множитель $P(l)$ зависят от динамических переменных. Нетрудно проверить, что $M_l(z; z_0)$ — локальная величина:

$$ M_l(z) \equiv M_l(z; z_0) = \frac{\langle \beta(l) | r(z/z_0) | \alpha(l-1) \rangle}{\langle \beta(l) | \alpha(l-1) \rangle} $$

(отметим, что неразмерный множитель сокращается). Скалярное произведение берется только в первом пространстве, так что результат представляет собой матрицу 2×2 с особыми параметрами z. Эта матрица удовлетворяет условию нулевой кривизны

$$ \partial_z L_l(z) = M_{l+1}(z) L_l(z) - L_l(z) M_l(z). $$

Сформулируем основные результаты настоящей работы. Мы рассматриваем полносью дискретный частично анизотропный XXZ МГ и получаем представление его M- и L-операторов $M_l(z)$, $L_l(z)$ с помощью формул следующего вида, аналогичных (1.5):

$$ M_l(z) = \frac{\langle \beta(l) | R(z/z_0; q, \xi) | \beta(l-1) \rangle}{\langle \beta(l) | \alpha(l-1) \rangle}, $$

$$ L_l(z) = \frac{\langle \beta(l) | R(z/z_0; q, \xi^l) | \alpha(l) \rangle}{\langle \beta(l) | \alpha(l-1) \rangle}, $$

(1.7)
где \(R(z; q, \xi) \), \(R(z; q, \xi') \) — квантовые \(R \)-матрицы \(4 \times 4 \) (более точно определенные ниже). Их квантовый параметр \(q \) и параметры динамического твиста \(\xi, \xi' \) определяют пространственно-временной репеткой, векторы \(|\alpha(l)\rangle, |\beta(l)\rangle \) те же, что и в (1.5),

\[
|\tilde{\beta}(l)\rangle \equiv \begin{pmatrix} 0 & (-\xi \xi')^{\frac{l}{2}} \\ -\xi (-\xi')^{\frac{l}{2}} & 0 \end{pmatrix} |\beta(l)\rangle.
\]

Здесь стоит отметить, что модели с непрерывными и дискретными временами и общий \(L \)-оператор, формула (1.8) дает его \(R \)-матричное представление.

Чтобы представить эти формулы более наглядно, удобно воспользоваться языком метода алгебраического анализа Бете [6, 7]. Скалярное произведение берется в квантовом (вертикальном) пространстве, как это мы получаем матрицу \(2 \times 2 \) во всевозможном (горизонтальном) пространстве:

\[
\langle \beta | R(z) | \alpha \rangle = \frac{\langle \beta | \alpha \rangle}{| \alpha \rangle}.
\]

\(M \)-оператор (1.7) генерирует сдвиг дискретного времени \(m \). Из дискретной версии условия нулевой кривизны

\[
\mathcal{M}_{l+1,m}(z) \mathcal{L}_{l,m}(z) = \mathcal{L}_{l,m+1}(z) \mathcal{M}_{l,m}(z)
\]

следуют уравнения движения модели \(MG \) в дискретном пространстве-времени.

Ключевой момент указанной конструкции заключается в замене исходных динамических переносных на пару векторов \(|\alpha(l)\rangle, |\beta(l)\rangle \). В работах [5], посвященных точной репеточной регуляризации интегрируемых моделей, были указаны некоторые формулы, в которых компоненты этих векторов выражаются через канонические переменные модели. Они выглядели достаточно сложно, и поэтому ей ли могли способствовать пониманию сути дела. В настоящей работе их смысл становится более ясным. Пользуясь уравнениями движения полностью дискретной модели (которые следуют из дискретного условия нулевой кривизны (1.9)), мы покажем, что исходным образом дискретизированные компоненты векторов \(|\alpha(l)\rangle, |\beta(l)\rangle \) являются \(\tau \)-функциями.

Так-функция является одним из самых фундаментальных объектов теории (см., например, [8, 9]). Стоит подчеркнуть, что присутствие квантовых \(R \)-матриц в классических дискретных задачах вряд ли можно было бы обнаружить, не привлечь представления нелейных уравнений и элементов \(L \)-пары полностью в терминах \(\tau \)-функций, поэтому мы должны будем совершить довольно длинный эскурс в билинейный формализм Хироты [10, 12] (раздел 2). unserem заключающим принципом будет интерпретация
дискретных временных потоков, данная Микиой [13], в которой дискретные интегрируемые уравнения рассматриваются как члены той же бесконечной иерархии, что и их непрерывные аналоги. Общий метод построения дискретных солитонных решений был развит в работе [14], где, в частности, была предложена дискретная иерархия (X X X) модели МГ. Следуя этим идеям, мы работаем с дискретной МГ типа X X Z в билинейной форме. В разделе 3 для него получена матричная L М-пара, которая выводится из основных линейных задач для скалярной волновой функции [12, 14, 15].

Способ изложения в настоящей работе отличается от предложенного в статье [3], где исходными объектами служат L-оператор Фаддеева-Вольфа или Яковина. Коренной для модели СГ на решетке, который выражался в терминах решеточного поля, после чего с помощью специальной подстановки совершался переход к τ-функции. Здесь мы начинаем прямо с билинейных уравнений для τ-функции, а не с уравнений движения для спиновых переменных на решете по двум причинам. Во-первых, уравнения движения, будучи записаны через спиновые переменные, выглядят крайне сложно и ко всему же реалистических не нужны. Во-вторых, в дискретном случае вообще нет квантового способа введения спиновых переменных, в то время как билинейный формализм Хироты калибровочно-инвариантен и свободен от артефактов. Именно это виду, следует подчеркнуть, что модель Гейзенберга для нас здесь это не более чем удобное название для соответствующих образов редуцированной иерархии уравнений двумеризованной цепочки Тоды [22]. (На самом деле мы будем работать с несколькими более общей моделью, чем МГ типа X X Z.) В этом смысле можно использовать и название частично аннигилирующая модель кирального поля. Однако, что в дискретном случае специфические черты каждой из этих моделей становятся несущественными [8], а важен тип редукции из двумеризованной иерархии Тоды, который для обеих моделей одинаков.

Будучи вложенными в иерархию, билинейные уравнения с самого начала подразумевают наличие бесконечного количества дискретных временных (коммутирующих потоков). Вообще говоря, любые два из них можно выбрать в качестве координат в дискретном пространстве-времени. Однако, для нашей цели нам потребуется некоторая выделенная пространственно-временная решетка, которая вводится в разделе 4. Координаты на ней будут обозначаться через l, m. Мы построим L М-пару для трансляций l → l + 1, m → m + 1, а L и M-операторы в разделе 5 будут представлены в виде (1.8), (1.7). В разделе 6 обсуждается предел непрерывного

[2] На квантовом уровне эти идеи были частично приведены в соответствие друг с другом в работах [17–20], где была построена квантовая модель СГ в дискретном пространстве-времени (т.е. правильно квантование дискретного уравнения СГ, предложенного Хиротой). Обобщение на случай полных теорий аффинной модели Тоды на решетке было дано в работе [21].
времени. Показано, как из наших конструций можно получить уравнение (1.5). Как мы уже отмечали, классическая τ-матрица в нём оказывается не обязательно кососимметричной. Этот факт свидетельствует о неусильдокольности моделей в общем случае.

В разделе 7 отмечены некоторые перечисленные проблемы, постановка которых мотивирована полученными результатами.

2. БИЛИНЕЙНЫЙ ФОРМАЛИЗМ ХИРОТЫ

В этом разделе изложены некоторые результаты работ [13, 14] в виде, удобном для наших целей. Формулы проиллюстрированы графическим изображением дискретных потоков, предложенным в обзоре [23].

2.1. Общий вид трехчленных билинейных уравнений.

Основной объект билинейного формализма — функция \(\tau = \tau(a, b, c, \ldots) \), которая зависит от дискретных переменных \(a, b, c, \ldots \) и устанавливает ряд билинейных разностных уравнений. Каждой дискретной переменной \(a \) соответствует “метка” комплексное число \(\lambda_a \in \mathbb{C} \) (переменная Мини). Ее следует представлять себе как неперывный “симер”, приписаный дискретному потоку. Для любых двух дискретных потоков \(a, b \) позаким

\[\lambda_{ab} = \lambda_a - \lambda_b, \quad \lambda_{ab} = -\lambda_{ba}. \]

Напомним, как составляются билинейные уравнения. С каждой тройкой \(\{abc\} \) дискретных потоков ассоциировано трехчленное билинейное уравнение для \(\tau \) [12, 13]:

\[
\begin{align*}
\lambda_{bc} \tau(a + 1, b, c) + \lambda_{ac} \tau(a, b + 1, c) + \lambda_{ab} \tau(a, b, c + 1) + \\
+ \lambda_{ab} \tau(a, b, c + 1) \tau(a + 1, b + 1, c) = 0.
\end{align*}
\]

Все остальные переменные, от которых зависит \(\tau \), входят в (2.1) как параметры. С каждой четверкой \(\{abed\} \) ассоциировано еще одно трехчленное уравнение

\[
\begin{align*}
\lambda_{cd} \lambda_{bc} \tau(a + 1, b, c, d + 1) \tau(a, b + 1, c + 1, d) + \\
+ \lambda_{bd} \lambda_{ac} \tau(a + 1, b, c + 1, d + 1) \tau(a + 1, b + 1, c + 1, d) + \\
+ \lambda_{cd} \lambda_{ab} \tau(a, b, c + 1, d + 1) \tau(a + 1, b + 1, c + 1, d) = 0.
\end{align*}
\]

Замечание 1. Связи между (2.1) и (2.2) существуют в обоих направлениях. С одной стороны, уравнение (2.1) является частным случаем (2.2) при \(\lambda_d \to \infty \) (в соответствии с результатами [13] этот предел означает, что зависимость \(\tau \) от переменной \(d \) исчезает). С другой стороны, хотя уравнение (2.2) линейно независимо от (2.1), оно является алгебраическим следствием уравнений вида (2.1), написанных для каждой тройки \(\{abc\} \), \(\{abd\} \) и \(\{acd\} \). В этом смысле все полученные ниже результаты следуют уже из уравнений (2.1).
2.2. Основные билинейные уравнения для дискретной модели МГ. Рассмотрим пять различных дискретных потоков и обозначим соответствующие переменные через \(p, p', n, u, v \). Обозначим \(\tau \)-функцию через \(\tau(p, p', n, u, v) \equiv \tau_{n}^{p',p}(u, v) \). Последняя форма записи, выделяющая \(u, v \) среди остальных переменных, напоминает о том, что они будут играть роль киральных пространственно-временных координат. Назовем их киральными переменными.

Билинейные уравнения для \(\tau \)-функции модели МГ типа \(XXZ \) следуют из уравнения (2.1) после наложения условия редукции

\[
\tau_{n}^{p+1,p'+1}(u, v) = \tau_{n+1}^{p',p}(u, v),
\]

(2.3)

уменьшающего число независимых переменных до четырех, в качестве которых мы выберем \(p, n, u, v \).

ЗАМЕЧАНИЕ 2. Дискретное уравнение КдФ получается как специальный случай \(\lambda_n = \infty \), так что зависимость от \(n \) пропадает. Дискретная модель СГ получается при наложении еще одного условия \(\lambda_{p'} = \lambda_p \).

На рис. 1 изображена рассматриваемая конфигурация дискретных потоков (граф потоков), где использовано графическое представление, предложенное в обзоре [23]. Штриховыми линиями проведены здесь для того, чтобы показать, что редукция (2.3) это в точности редукция к одномерной цепочке Тоды в дискретном времени (подробнее см. [23]). В самом деле, векторное поле \(\partial_p \equiv -\partial_n + \partial_p \) задает поток \(\tau \), соответствующий штриховой линии, в его варианте редукция приобретает более знакомый тодянский вид \(\tau_{n+1}^{p+1,p} \equiv \tau_{n}^{p,p} \). При \(\lambda_p \to \infty \), \(\lambda_{p'} \to \infty \) эта редукция записывается как дифференциальное уравнение. В этом случае мы приходим к изотропному \(XX \) МГ в дискретном времени.

ЗАМЕЧАНИЕ 3. Графическое представление значительно облегчает понимание при работе с дискретными потоками, особенно в тех случаях, когда их много (точный смысл графических элементов см. в [23]). Здесь мы только отметим, что если иметь в виду решение конечного размера типа (см., например, [2, 24]), то граф можно представлять себе как находящийся на некоторой части римановой поверхности с локальной координатой \(\lambda^{-1} \).
Переменные Мини — это координаты выходных точек на римановой поверхности. Оп-режки — это разрезы, соединяющие выходные точки и пересекающие дискретные ком-мутирующие точки на изображении с помощью отображения Абеля\(^3\).

Условие (2.3) позволяет при необходимости исключить переменную \(p' \). Приведем список уравнений, которые получаются таким образом из уравнений (2.1), (2.2), передлежащим из них указана траектория или червячное нашёгатель, которой оно соответствует.

В первом десятичное изображение Тоеды в дискретном времени, представленное в билинейной форме [12]. В нашем контексте оно играет роль уравнения связи на динами-ческих переменных, так как пространственно-временные координаты \(u, v \) входят в него как параметры.

Следующая группа уравнений содержит только \(p, n \) и \(u \):

\[
\begin{align*}
\{(p'p)u\} : & \quad \lambda_{p'p} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1 + v) - \lambda_{pu} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v) = \\
& = \lambda_{p'p} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v), \quad (2.5)
\end{align*}
\]

\[
\begin{align*}
\{pnu\} & \quad \lambda_{nu} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1 + v) + \lambda_{pu} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v) = \\
& = \lambda_{nu} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v), \quad (2.6)
\end{align*}
\]

\[
\begin{align*}
\{n'pu\} : & \quad \lambda_{pn} \lambda_{p'p} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1 + v) - \lambda_{pu} \lambda_{p'p} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v) = \\
& = \lambda_{p'p} \lambda_{nu} \tau_{n+1}^p(u, v) \tau_{n+1}^p(u + 1, v). \quad (2.7)
\end{align*}
\]

Аналогичные уравнения можно записать для \(p, n, v \) достаточно везде заменить \(u \) на \(v \).

ЗАМЕЧАНИЕ 4. Взяв следующую комбинацию уравнений (2.5), (2.6):

\[
\frac{\text{уравнение (2.5)}}{\lambda_{p'p} \tau_{n+1}^p(u + 1, v)} - \frac{\text{уравнение (2.6)}}{\lambda_{nu} \tau_{n+1}^p(u + 1 + v)},
\]

и подставляя (2.7) в левую часть, получим в результате равенства, получим (2.8).

Уравнения, в которых учтены обе переменные \(u, v \), имеют вид

\[
\begin{align*}
\{nuv\} & \quad \lambda_{nu} \tau_{n+1}^p(u, v + 1) \tau_{n+1}^p(u + 1, v) - \lambda_{uv} \tau_{n+1}^p(u + 1, v + 1) \tau_{n+1}^p(u, v + 1) = \\
& = \lambda_{uv} \tau_{n+1}^p(u, v + 1 + v) \tau_{n+1}^p(u, v + 1), \quad (2.9)
\end{align*}
\]

\[
\begin{align*}
\{p'uv\} & \quad \lambda_{p'p} \lambda_{pu} \tau_{n+1}^p(u, v + 1) \tau_{n+1}^p(u + 1 + v) - \lambda_{pu} \lambda_{p'p} \tau_{n+1}^p(u, v + 1) \tau_{n+1}^p(u + 1 + v) = \\
& = \lambda_{p'p} \lambda_{nu} \tau_{n+1}^p(u, v + 1 + v) \tau_{n+1}^p(u, v + 1), \quad (2.10)
\end{align*}
\]

\(^3\) Общую теорию конечно-щелочных решений разностного уравнения Хиропы можно найти в работе [25].
{puv} : $\lambda_{pu}\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v) - \lambda_{pn}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = $
$ = \lambda_{uv}\tau^p_u(u + 1, v + 1)\tau^{p+1}_n(u, v), \tag{2.11}$

{p'nuv} : $-\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = $
$ = \lambda_{uv}\lambda_{nu}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.12}$

{p'uv} : $\lambda_{pv}\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v) - \lambda_{pu}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = $
$ = \lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.13}$

{pnuv} : $-\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = $
$ = \lambda_{nu}\lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v). \tag{2.14}$

Этот список линейно независимых трехчленных билинейных уравнений еще далеко не полон. Полный список содержит также и много других уравнений, которые либо следуют из приведенных выше, либо могут быть получены из вышеуказанных уравнений (2.1), (2.2) для больших чисел переменных, они, однако, в свою очередь являются алгебраическими следствиями уравнений (2.1), некоторые из них представлены ниже.

Некоторые полезные следствия основных уравнений. Заметим, что пары уравнений (2.11), (2.12) и (2.13), (2.14) представляют собой системы линейных уравнений на $\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v)$, $\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1)$ и $\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1)$ соответственно. Решая эти системы, получим соотношения

\[
\lambda_{pv}\lambda_{un}\tau^{p+1}_n(u, v + 1)\tau^p_u(u + 1, v) + \lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= \lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.15}
\]

\[
\lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) + \lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= \lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.16}
\]

\[
\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= \lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.17}
\]

\[
\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= \lambda_{uv}\tau^{p+1}_n(u + 1, v + 1)\tau^p_u(u, v), \tag{2.18}
\]

где

\[
\Lambda \equiv \lambda_{pu}\lambda_{vn} - \lambda_{uv}\lambda_{vn}. \tag{2.19}
\]

Эти уравнения несут даже больше информации, чем исходные уравнения (2.11), (2.14), в том смысле, что позволяют "счиывать" некоторые, т.е. они остаются содержательными при $\lambda_u = \lambda_v$, в (2.11), (2.14) такая операция приводит к тождеству $0 = 0$. В этом случае $\tau(u + 1, v + 1)$ надо заменить на $\tau(u + 2)$, что дает

\[
\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u - 1, v)\tau^p_u(u + 1, v) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= (\lambda_{pu}\lambda_{vn} - \lambda^2_{uv})\tau^p_u(u, v)\tau^{p+1}_n(u + 1, v), \tag{2.20}
\]

\[
\lambda_{pu}\lambda_{vn}\tau^{p+1}_n(u - 1, v)\tau^p_u(u + 1, v) + \lambda_{pv}\lambda_{un}\tau^{p+1}_n(u + 1, v)\tau^p_u(u, v + 1) = \\
= (\lambda_{pu}\lambda_{vn} - \lambda^2_{uv})\tau^p_u(u, v)\tau^{p+1}_n(u, v), \tag{2.21}
\]
и аналогичные уравнения, в которых сделана замена \(u \rightarrow v \).

Наконец, выписав еще два уравнения, которые получаются из (2.5) (2.8), (2.15) (2.18) и (2.20), (2.21) (вместе с их аналогами с заменой \(u \rightarrow v \)) процедурой, похожей на ту, которая объяснялась в замечании 4:

\[
\lambda_{pn} \lambda_{p'} \tau_{n-1}^p (u + 1, v + 1) - \lambda_{un} \lambda_{n'} \tau_{n}^p (u + 1, v + 1) \tau_{n}^p (u, v) = \\
\Lambda \tau_{n}^p (u + 1, v) \tau_{n}^p (u, v + 1),
\]

(2.22)

\[
\lambda_{pn} \lambda_{p'} \lambda_{n} \tau_{n-1}^{p} (u + 1, v + 1) - \lambda_{pn} \lambda_{n'} \lambda_{p'} \tau_{n+1}^{p} (u + 1, v + 1) \tau_{n+1}^{p} (u, v) = \\
\lambda_{pn} \lambda_{p'} \Lambda \tau_{n}^{p} (u + 1, v) \tau_{n}^{p} (u, v + 1).
\]

(2.23)

Отметим, что полный список линейно независимых билинейных уравнений для дискретной модели МГ (даже если ограничить только трехлученную) несколько длиннее. Здесь были выписаны только уравнения, которые необходимы ниже.

3. ЛИНЕАРИЗАЦИЯ ДИСКРЕТНОЙ МОДЕЛИ МГ

Билинейные уравнения предыдущего раздела могут быть представлены как условия совместности пересечения системы линейных задач для "волокной функции" \(\Psi \). Это и называется здесь линеаризацией. Для наших целей она представляет интерес как систематический метод нахождения \(L \ P \)-пар.

3.1. Скалярные линейные задачи. Билинейные уравнения (2.4) (2.14) следуют из системы линейных уравнений для "волокной функции" \(\Psi = \Phi_p^p (u, v) \). Прототип уравнений для \(\Psi \) является [12, 14, 15] (см. также обзор [23]) уравнение

\[
\Phi (a + 1, b) = \Phi (a, b + 1) - \lambda_{ab} \tau (a, b) \tau (a + 1, b + 1) \Phi(a, b),
\]

(3.1)

где \(a, b \) надо вводить любую пару элементарных дискретных переменных.

Угловая редукция (2.3) для функции \(\Phi \) имеет вид

\[
\Psi_{n+1}^{p+1} (u, v) = z^2 \Phi_{n}^p^p (u, v),
\]

(3.2)

где \(z \) — спектральный параметр. Исключив переменную \(p' \) с помощью этого условия, имеем

\[
\{ n a \} : \quad \Psi_{n}^p (u + 1) = \Psi_{n+1}^p (u) - \lambda_{un} \tau_{n}^p (u) \tau_{n+1}^p (u + 1) \Phi_{n}^p (u),
\]

(3.3)

\[
\{ p u \} : \quad \Psi_{n+1}^{p+1} (u) = \Psi_{n}^{p+1} (u + 1) - \lambda_{pu} \tau_{n}^p (u + 1) \tau_{n+1}^{p+1} (u + 1) \Phi_{n}^{p+1} (u),
\]

(3.4)

\[
\{ p' u \} : \quad z^2 \Phi_{n+1}^{p+1} (u) = \Psi_{n}^{p+1} (u + 1) - \lambda_{p' u} \tau_{n}^{p+1} (u) \tau_{n+1}^{p+1} (u + 1) \Phi_{n}^{p+1} (u)
\]

(3.5)

и аналогичные уравнения для \(v \) вместо \(u \). В (3.3) (3.5) переменная \(v \) явно не указана, так как она одна и та же для всех функций. Эти уравнения будут для нас основным инструментом вывода матричных \(L \ P \)-пар.
3.2. Векторная линейная задача. Складываем линейные уравнения (3.3) (3.5) таким образом, чтобы представить транслацию вектора \((\Psi^p_n(u+1)) \) вдоль \(u \)-направления в матричной форме:

\[
\begin{pmatrix}
\Psi^p_n(u+1) \\
\Psi^{p+1}_n(u+1)
\end{pmatrix} = \begin{pmatrix}
\frac{\lambda^p_{nu} \tau^p_n(1)(\tau^{p+1}_n(1)(u+1))}{\tau^p_n(1)(\tau^{p+1}_n(1)(u))} + \frac{1}{z^2} \lambda_{nu}^p \frac{\tau^p_n(1)(\tau^{p+1}_n(1)(u+1))}{\tau^p_n(1)(\tau^{p+1}_n(1)(u))} \\
0
\end{pmatrix} \begin{pmatrix}
\Psi^p_n(u) \\
\Psi^{p+1}_n(u)
\end{pmatrix},
\]

(3.6)

Изменим калибровку, перейдя к волновой функции

\[
\begin{pmatrix}
\Phi_1(u) \\
\Phi_2(u)
\end{pmatrix} = \mathcal{D}(u) \begin{pmatrix}
\Psi^p_n(u) \\
\Psi^{p+1}_n(u)
\end{pmatrix},
\]

(3.7)

gде

\[
\mathcal{D}(u) = \left(\tau^p_{n+1}(u) \tau^{p+1}_{n+1}(u) \right)^{-\frac{1}{2}} \begin{pmatrix}
\lambda_{nu}^p z \frac{\psi^p_n(1)(u)}{\psi^{p+1}_n(1)(u)} & 0 \\
0 & \lambda_{nu}^p z \frac{\psi^p_n(1)(u+1)}{\psi^{p+1}_n(1)(u+1)}
\end{pmatrix}
\]

dиагональная матрица. Тогда линейная задача (3.6) приобретет вид

\[
\begin{pmatrix}
\Phi_1(u+1) \\
\Phi_2(u+1)
\end{pmatrix} = L^{-1}(u) \begin{pmatrix}
\Phi_1(u) \\
\Phi_2(u)
\end{pmatrix}.
\]

(3.8)

Входящий в (3.8) \(L \)-опператор \(L^{-1}(u) \) можно компактно записать в терминах трех полей

\[
\psi^0(u, v) = \tau^p_{n+1}(u, v), \quad \psi^+(u, v) = \frac{\tau^p_n(u, v)}{\tau^{p+1}_{n+1}(u, v)}, \quad \psi^-(u, v) = \frac{\tau^{p+1}_n(u, v)}{\tau^p_{n+1}(u, v)}.
\]

(3.9)

Для краткости мы используем также обозначение \(\phi(u, v) \equiv \left[\psi^0(u, v) \right]^{1/2} \). Для \(L \)-опратора получим выражение

\[
L^{-1}(u) = \begin{pmatrix}
\lambda_{nu}^p \frac{\phi(u+1, v)}{\phi(u, v)} & z \lambda_{nu}^p \frac{\psi^-(u+1, v)}{\phi(u+1, v)} \\
z \lambda_{nu}^p \frac{\phi(u, v)}{\phi(u+1, v)} \phi^+(u, v) + z^2 \frac{\phi(u+1, v)}{\phi(u, v)}
\end{pmatrix}.
\]

(3.10)

Отметим, что

\[
\det L^{-1}(u) = \lambda_{nu}^p \lambda_{nu}^p - \lambda_{nu}^p z^2.
\]

(3.11)

Будем называть \(L^{-1}(u) \) киральной \(L \)-опратором, так как согласно (3.8) он генерирует сдвиги киральной переменной \(u \) в волновой функции. В п. 3.3 мы изучим дискретное условие нулевой кривизны с матрицами вида (3.10).

3.3. Условие нулевой кривизны для киральных \(L \)-опраторов. Обозначим координаты вершины в элементарной ячейке киральной \((u, v)\)-решётки\footnote{Вообще говоря, координатные оси нижально ортогональны. В частности, при \(\lambda_u = \lambda_v \) двумерная решётка сводится к одномерной.}, как показано на
рис. 2. В этих обозначениях (заимствованных из работ [17, 19]) \(L \)-оператор (3.10) имеет вид

\[
L_{B \to A}^{(u)}(z) = \left(\begin{array}{cc}
\lambda_p \phi(A) \psi^+(A) & z\lambda_p \phi(A) \psi^+(A) \\
z\lambda_p \phi(B) \psi^+(A) & \lambda_p \phi(B) \psi^+(A)
\end{array} \right). \tag{3.12}
\]

Аналогично введем другой киральный \(L \)-оператор \(L_{C \to A}^{(v)}(z) \), который дается также формулой (3.12), но с заменой \(\phi(B) \to \phi(C) \), \(\lambda_p \to \lambda_p \) и \(\lambda_{p'} \to \lambda_{p'} \).

\[
\begin{array}{c}
C - \{u, v+1\} \\
A - \{u, v\} \\
B - \{u+1, v\}
\end{array}
\]

Рис. 2

Условие нулевой кривизны на решете

\[
L_{D \to B}^{(v)}(z) L_{B \to A}^{(u)}(z) = L_{D \to C}^{(u)}(z) L_{C \to A}^{(v)}(z) \tag{3.13}
\]

эквивалентно следующей системе нелинейных уравнений движения для полей \(\psi^0 \), \(\psi^\pm \):

\[
\begin{aligned}
(\lambda_{p'} \psi^0(C) - \lambda_{p'} \psi^0(B)) (\psi^0(A) \psi^0(A) - \psi^0(B) \psi^0(C)) &= \\
= \lambda_p \psi^0(B) \psi^0(C) \psi^0(D) [\psi^+(C) \psi^+(C) - \psi^+(B) \psi^-(B)],
\end{aligned}
\]

\[
\begin{aligned}
\lambda_p \psi^0(D) \psi^0(C) \psi^-(B) + \lambda_p \psi^0(A) \psi^0(C) \psi^-(D) &= \\
= \lambda_p \psi^0(D) \psi^0(B) \psi^-(C) + \lambda_p \psi^0(A) \psi^0(B) \psi^-(D),
\end{aligned}
\]

\[
\begin{aligned}
\lambda_p \psi^0(D) \psi^0(C) \psi^+(C) + \lambda_p \psi^0(A) \psi^0(C) \psi^+(A) &= \\
= \lambda_p \psi^0(D) \psi^0(B) \psi^+(B) + \lambda_p \psi^0(A) \psi^0(B) \psi^+(A).
\end{aligned}
\]

Отметим, что уравнения движения дискретного МГ типа \(XXX \), приведенные в работе [14], получены для другого выбора динамических переменных. Было бы полезно установить прямое соответствие между ними.

ЗАМЕЧАНИЕ 5. Дискретное уравнение КдФ в форме Фаддеева Волкова [17, 18] получается из (3.15) или (3.16) в пределе \(\lambda_n \to \infty \), когда зависимость от \(n \) исчезает, так что \(\psi^\pm = \psi^\pm = 1 \), и остается единственное поле \(\psi^0 \). Киральный \(L \)-оператор Фаддеева Волкова для дискретного уравнения КдФ можно получить из (3.12) в том же пределе при условии, что перенормированный спектральный параметр \(\zeta = z\lambda_{p'}^{1/2} \) остается конечным.

3.4. Антикиральные \(L \)-операторы. Наряду с киральными введем \(L \)-операторы несколько другого типа, которые назовем антикиральными.
Положим \(\lambda_n = \lambda_n \) в киральном \(L \)-опператоре (3.12) и соответственно отождествим \(u \) с \(n \). Получим оператор, генерирующий трансляцию

\[
A = (u, v, n) \rightarrow A^\dagger = (u, v, n + 1)
\]

на трёхмерной решётке с координатами \(u, v, n \):

\[
L^{(n)}_{A^\dagger A} (z) = \left(\begin{array}{ll}
\lambda_{pn} \frac{\phi(A)}{\phi(A)} & z \lambda_{pn} \frac{\psi^{-}(A)}{\phi(A)} \\
\lambda_{pn} \frac{\psi^{+}(A)}{\phi(A)} & z \lambda_{pn} \frac{2 \phi(A)}{\phi(A)} + z^2 \end{array} \right) =
\]

\[
= \left(\frac{\tau_{n+1}^p(A)}{\tau_i} + (A) \frac{\tau_{n+1}^p(A)}{\tau_{n+2}^p(A)} \right)^\dagger \left(\begin{array}{ll}
\lambda_{pn} \tau_{n+1}^p(A) & z \lambda_{pn} \frac{\tau_{n+2}^p(A)}{\phi(A)} \\
\lambda_{pn} \frac{\tau_{n+1}^p(A)}{\phi(A)} & z^2 + \lambda_{pn} \frac{\tau_{n+2}^p(A)}{\phi(A)} \end{array} \right).
\]

(3.17)

Аналогичные обозначения \((B^\dagger = (u + 1, v, n + 1), \ B^\dagger = (u + 1, v, n - 1) \) и т.д.) будут систематически использоваться для вершин в верхнем и нижнем слоях трёхмерной решётки.

Рис. 3

Определим антикиральный \(L \)-оператор

\[
L^{(e)}_{C^\dagger A} (z) = -\lambda_{pn} \lambda_{pn} \left[L^{(e)}_{C^\dagger C} (z) \right]^{-1} L^{(e)}_{C^\dagger A} (z),
\]

(3.18)

gенерирующий сдвиг антикиральной переменной \(\tilde{e} \), соответствующей потоку, который задаётся векторным полем \(\tilde{h} = -\partial_n + \partial_v \) в пространстве переменных. На рис. 3 изображён антикиральный переменной \(\tilde{e} \) на графике потоков из п. 2.2. Вычислим правую часть (3.18), получим

\[
L^{(e)}_{C^\dagger A} (z) = \left(\begin{array}{ll}
\lambda_{vn} \frac{2 \phi(A)}{\phi(C^{-1})} - \lambda_{pn} \lambda_{pn} \frac{\phi(C^{-1})}{\phi(A)} & -z \lambda_{pn} \frac{\psi^{-}(A)}{\phi(A)} \\
-\lambda_{pn} \phi(A) \frac{\psi^{+}(A)}{\phi(C^{-1})} & -\lambda_{pn} \lambda_{pn} \frac{\phi(C^{-1})}{\phi(A)} \end{array} \right)
\]

(3.19)

(здесь использованы аналоги уравнений (2.6), (2.7) с заменой \(u \rightarrow v \).

Замечание 6. Хотя антикиральные потоки нам не понадобится, мы сочли целесообразным включить их в рассмотрение, чтобы мотивировать выбор \(L \)-оператора в следующем разделе. Подчеркнем, что антикиральные потоки равнозначны с киральными.
На симметрию между ними указывает граф потоков, а также явный вид \(L \)-операторов.
Заметим также, что в случае дискретных моделей КФ или СГ разница между киральными и антикиральными потоками исчезает.

4. СОСТАВНЫЕ \(L \)- И \(M \)-ОПЕРАТОРЫ

Киральные и антикиральные \(L \)-операторы из предыдущего раздела служат элементарными блоками для построения более сложных операторов, которые строятся как упорядоченное произведение киральных и антикиральных. Однако не все они имеют \(R \)-матричное представление нужного вида. Следовательно, нашей задачей будет отбор таких пар потоков \(l, m \), для которых соответствующие \(L \)- и \(M \)-операторы удовлетворяют этому требованию. Решётку с координатами \(l, m \) называем пространственно-временной решеткой. Она вложена в трёхмерную решётку с координатами \(u, v, n \).

Опыт, приобретённый при работе с дискретной моделью СГ, подсказывает попробовать в качестве первых кандидатов составные \(L \)- и \(M \)-операторы, которые осуществляют трансляцию вдоль диагоналей киральной решетки в пространстве-времени. Оказывается, что в дискретной модели МГ этот рецепт буквально применим только к \(M \)-оператору, поэтому вопрос традиции мы начинаем именно с \(M \)-оператора. Определение \(L \)-оператора потребует существенных модификаций, связанных с тем фактом, что в общем случае пространственно-временная решетка вкладывается в трёхмерную иначе, чем киральная.

4.1. Составной \(M \)-оператор. Рассмотрим составной оператор, транслирующий волновую функцию вдоль диагонали \(C \rightarrow B \):

\[
\widetilde{M}_{B-C}(z) = z^{-1}(\lambda_{v}z^{2} - \lambda_{v}\lambda_{v'})L_{B-A}^{(u)}(z)[L_{C-A}^{(v)}(z)]^{-1}. \tag{4.1}
\]

Из (3.12) находим

\[
\widetilde{M}_{B-C}(z) = \begin{pmatrix}
z\lambda_{v}\frac{\phi(C)}{\phi(B)} - z^{-1}\lambda_{v}\lambda_{v'}\frac{\phi(B)}{\phi(C)} & \lambda_{v}\phi'(B)\varphi_{M}(C, B) \\
\lambda_{v}\psi^{+}(A)\phi(A)^{2}\varphi_{M}(C, B) & z\lambda_{v}\frac{\phi(B)}{\phi(C)} - z^{-1}\lambda_{v'}\lambda_{v}\frac{\phi(C)}{\phi(B)}
\end{pmatrix}, \tag{4.2}
\]

где

\[
\varphi_{M}(C, B) = \lambda_{v}\phi(C) - \lambda_{v'}\phi(B). \tag{4.3}
\]

Диагональные элементы были преобразованы к указанной форме с помощью уравнений (2.6) и (2.7). Недиагональные элементы получены с помощью уравнений (3.15), (3.16).

Выразим матричные элементы через \(\tau \)-функцию. Для любых двух вершин \(X, Y \) на решётке введем обозначение

\[
W(X, Y) = \left[\tau_{n+1}^{p+1}(X)\tau_{n+1}^{p}(X)\tau_{n+1}^{p+1}(Y)\tau_{n+1}^{p}(Y)\right]^{\frac{1}{2}}.
\]
Используя (2.11), (2.13), находим

\[\tilde{M}_{B \to C}(z) = \frac{1}{W(C, B)} \left(\begin{array}{c}
z\lambda_{\mu\nu}r_{n+1}^p(C)\tau_{n+1}^p(B) - z^{-1}\lambda_{\mu\nu}\lambda_{\rho'\nu}\tau_{n+1}^p(C)\tau_{n+1}^p(B) \\
-\lambda_{\nu\lambda}\lambda_{\rho'\nu}\tau_{n+1}^p(A)\tau_{n+1}^p(D) - z\lambda_{\nu\lambda}\tau_{n+1}^p(B)\tau_{n+1}^p(C) - z^{-1}\lambda_{\nu\lambda}\lambda_{\rho'\nu}\tau_{n+1}^p(A)\tau_{n+1}^p(B) \end{array} \right). \]

(4.3)

Далее с помощью уравнений (2.17), (2.18) можно выразить элементы матрицы в (4.3) через значения \(\tau \)-функции только в вершинах \(A \) и \(D \), а зависимость от полей в вершинах \(C, B \) остается только в скалярных множителях \(W^{-1}(C, B) \). В самом деле, правые части уравнений (2.17), (2.18) содержат как раз те члены, которые находим на диагонали матрицы (4.3). Заменив их на левые части тех же уравнений, видим, что матрица будет зависеть только от \(A \) и \(D \) (это более общее соотношение в разделе 5).

4.2. Составной \(L \)-опператор (первяя версия). Начнем с составного \(L \)-опператора, выбор которого основан на опыте работы с дискретной моделью \(\mathcal{C} \mathcal{G} \) [3]:

\[L_{D \to A}^{(u)}(z) = z^{-1} L_{D \to B}^{(v)}(z) L_{B \to A}^{(v)}(z). \]

(4.4)

Многократное применение билинейных уравнений из раздела 2, можно получить выражения его элементов через \(\tau \)-функцию:

\[L_{D \to A}^{(u)}(z) = \frac{1}{\lambda_{\mu\nu}W(A, D)} \left(\begin{array}{c}
L_{11}^{(u)}(z) \\
L_{12}^{(u)}(z) \\
L_{21}^{(u)}(z) \\
L_{22}^{(u)}(z) \end{array} \right), \]

(4.5)

где

\[L_{11}^{(u)}(z) = \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) - \lambda_{\rho'\nu}\tau_{n+1}^p(A)\tau_{n+1}^p(B), \]

(4.6)

\[L_{12}^{(u)}(z) = \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) - \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B), \]

(4.7)

\[L_{21}^{(u)}(z) = \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) - \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B), \]

(4.8)

\[L_{22}^{(u)}(z) = \frac{\lambda}{\lambda_{\mu\nu}\lambda_{\rho'\nu}} \left(\lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) - \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) \right) + \]

\[+ \frac{\lambda}{\lambda_{\mu\nu}\lambda_{\rho'\nu}} \left(\lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) - \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z)\tau_{n+1}^p(A)\tau_{n+1}^p(B) \right), \]

(4.9)

\[\lambda_{\mu\nu}(z) = \lambda_{\mu\nu}(z) - \lambda_{\rho'\nu}\lambda_{\nu\lambda}(z), \quad \lambda_{\rho'\nu}(z) = \lambda_{\rho'\nu}(z) - \lambda_{\nu\lambda}(z). \]

(4.10)

Как будет показано ниже, исходное \(R \)-матричное представление для этого \(L \)-опператора не существует, поскольку матричные элементы имеют "неправильную" зависимость от \(z \). Нужно найти \(L \)-опператор с такой же зависимостью от \(z \), как в (4.3).

4.3. Составной \(L \)-опператор (окончательная версия). Приведенный выше \(L \)-опператор можно "улучшить" введением дополнительной транслации по \(n \). Правильный выбор заключается в том, чтобы рассмотреть транслацию

\[A = (u, v, n) \rightarrow D = (u + 1, v + 1, n - 1) \]
на трехмерной решетке с координатами u, v, n. Ее элементарная ячейка показана на рис. 4. Один из возможных способов выразить этот L-оператор через введенные выше таков:

$$\hat{L}_{D_{1} \rightarrow A}(z) = -\lambda_{pn} \lambda_{p'n} [L_{D_{1} \rightarrow D_{1}}^{(n)}(z)]^{-1} \hat{L}_{D_{1} \rightarrow A}^{(u)}(z),$$

(4.11)

где $L_{D_{1} \rightarrow D_{1}}^{(n)}(z)$ и $\hat{L}_{D_{1} \rightarrow A}^{(u)}(z)$ определяются соотношениями (3.17) и (4.5), соответственно, а матричные элементы $\hat{L}_{D_{1} \rightarrow A}^{(u)}(z)$ это некоторые лорановские полиномы от z. Из (4.11), (3.12) и (4.6) (4.10) видно, что диагональные элементы имеют не более чем третьей степени, правый верхний и левый нижний элементы не более чем четвертую и вторую, соответственно.

Оказывается, однако, что структура этого L-оператора в действительности гораздо проще, чем можно было бы ожидать, согласно (4.11). В частности, используя приведенные выше билинейные уравнения, можно показать, что члены старших степеней по z сокращаются и остаются только z и z^{-1} в диагональных элементах, а нондиагональные не зависят от z.

Это сокращение становится вполне естественным, если воспользоваться эквивалентным представлением L-оператора (4.11), которое использует антиквазиальные потоки, введенные в п. 3.4:

$$\hat{L}_{D_{1} \rightarrow A}(z) = L_{D_{1} \rightarrow C_{1}}^{(u)}(z) \hat{L}_{C_{1} \rightarrow A}^{(v)}(z).$$

Это означает, что поток, генерируемый L-оператором (4.11), есть “суперпозиция” квазиального и антиквазиального потока.

Воспользовавшись для нахождения L-оператора любой из двух данных выше формул, получим

$$\hat{L}_{D_{1} \rightarrow A}(z) = \left(\begin{array}{c}
z \lambda_{pn} \lambda_{u'n} \phi_{A}(A) + z^{-1} \lambda_{pn} \lambda_{p'n} \phi_{D_{1}^{-1}}(A) \\
\lambda_{pn} \psi_{C}(C) \phi_{C}(C)_{-1} \phi_{A}(A) + z \lambda_{pn} \lambda_{p'u'n} \phi_{D_{1}^{-1}}(A)
\end{array} \right),$$

(4.12)
где

\[\varphi_L(A, D^1) = \lambda_{p',u} \varphi_{\psi_\alpha} \phi(A) + \lambda_{p',u} \lambda_{p',n} \phi(D^1) \].

Выражение через \(\tau \)-функцию имеет вид

\[\mathcal{L}_{D^1-A}(z) = \frac{1}{W(A, D^1)} \begin{pmatrix} z \lambda_{p,u} \tau_{p,n}^a(D) \tau_{p,n+1}^p(A) + z^{-1} \lambda_{p,u} \lambda_{p,u} \lambda_{p,u} \tau_{p,n+1}^p(D) \tau_{p,n+1}^p(A) \\ \lambda_{p,u} \tau_{p,n}^a(B) \tau_{p,n+1}^p(C) \end{pmatrix} \begin{pmatrix} \lambda_{p,u} \lambda_{p,u} \lambda_{p,u} \tau_{p,n+1}^p(D) \tau_{p,n+1}^p(A) + z^{-1} \lambda_{p,u} \lambda_{p,u} \lambda_{p,u} \tau_{p,n+1}^p(D) \tau_{p,n+1}^p(A) \\ \tau_{p,n}^a(B) \tau_{p,n+1}^p(C) \end{pmatrix} \]

(А определена в (2.19)).

4.4. Пространственно-временная решетка. Обозначим через \(l, m \) координаты ячейки волокон, генерируемых построенными \(L \)- и \(M \)-операторами, соответственно, и рассмотрим наименную на них двумерную решетку. Векторные поля

\[\partial_l \equiv \partial_u + \partial_v - \partial_n, \quad \partial_m \equiv \partial_u - \partial_v \]

образуют оси координат этой решетки (отметим эквивалентное представление этих векторных полей через антиквадратичные потоки: \(\partial_l = \partial_u + \partial_v = \partial_u + \partial_v, \quad \partial_m = \partial_n - \partial_v \)). Сдвинув подходящим образом начало координат, мы можем вписать ее в объёмную трёхмерную решетку как плоскость, задаваемую однородным линейным уравнением

\[u + v + 2n = 0 \]

с условием \((u, v, n) \in \mathbb{Z}^3 \). Эта двумерная решетка в дальнейшем будет называться пространственно-временной решеткой (ПВР). Отметим, что квадратичная решетка вкладывается в трёхмерную в виде плоскости \(n = 0 \), т.е. она является линейной проекцией ПВР всех осей \(n \).

Пространственно-временные координаты \(l, m \) вписываются формулами

\[l = \frac{1}{2}(u + v), \quad m = \frac{1}{2}(u - v) \]

при условии, что точка \((u, v, n) \) принадлежит ПВР (в тех же предположениях \(l \) можно определить и как \(l = -n \)).

ЗАМЕЧАНИЕ 7. После очевидного согласования обозначений условие нулевой кризисы для построенной пары составных \(L \)- и \(M \)-операторов на элементарной ячейке ПВР принимает вид (1.9). Оно сводится к системе нелинейных уравнений для полей в вершинах восьми соседних элементарных кубов трёхмерной решетки. Эта система является прямым следствием основных уравнений движения (3.14) (3.16).

5. \(R \)-МАТРИЧНОЕ ПРЕДСТАВЛЕНИЕ \(L \ M \)-ПАРЫ

Наша цель представить \(L \)- и \(M \)-операторы (4.13), (4.3), построенные в предыдущем разделе, в виде свёртки квантовой \(R \)-матрицы с некоторыми векторами в ее квантовом пространстве.
5.1. Квантовая R-матрица. Рассмотрим следующую квантовую R-матрицу со спектральным параметром z:

$$R(z) = \frac{1}{4} [2a(z) + b_+(z) + b_-(z)] I \otimes I + \frac{1}{4} [2a(z) - b_+(z) - b_-(z)] \sigma_3 \otimes \sigma_3 +$$
$$+ \frac{1}{4} [b_+(z) - b_-(z)] (I \otimes \sigma_3 - \sigma_3 \otimes I) + \frac{1}{2} c(z) [\sigma_1 \otimes \sigma_1 + \sigma_2 \otimes \sigma_2] =$$
$$= \begin{pmatrix}
a(z) & 0 & 0 & 0 \\
0 & b_+(z) & c(z) & 0 \\
0 & c(z) & b_-(z) & 0 \\
0 & 0 & 0 & a(z)
\end{pmatrix},$$

(5.1)

где σ_i — матрицы Паули, I — единичная матрица, а функции $a(z), b_\pm(z), c(z)$ имеют вид

$$a(z) = qz - q^{-1} z^{-1}, \quad b_\pm(z) = \xi^\pm (z - z^{-1}), \quad c(z) = q - q^{-1}. \quad (5.2)$$

Если необходимо, будем писать $R(z) = R(z; q, \xi)$, где q — квантовый параметр, а ξ — параметр динамического взаимодействия [26, 27]:

$$R(z; q, \xi) = F(\xi) R(z; q, 1) F(\xi),$$
$$F(\xi) = \xi^{i/2} (I \otimes a_i - a_i \otimes I) = \text{diag}(1, \xi^{1/2}, \xi^{-1/2}, 1).$$

R-матрица (5.1) удовлетворяет квантовому уравнению Янга—Бакстера при любых q, ξ:

$$R_{12} \left(\frac{z_1}{z_2} \right) R_{13} \left(\frac{z_1}{z_3} \right) R_{23} \left(\frac{z_2}{z_3} \right) = R_{23} \left(\frac{z_2}{z_3} \right) R_{13} \left(\frac{z_1}{z_3} \right) R_{12} \left(\frac{z_1}{z_2} \right).$$

(5.3)

где $R_{12}(z)$ действует в $C^2 \otimes C^2 \otimes C^2$, как $R(z)$ в первом и во втором пространствах и как I в третьем (аналогично для $R_{13}(z)$ и $R_{23}(z)$).

Первое и второе пространства тензорного произведения в (5.1) называются соответственно квантовым и вспомогательным пространствами. Удобно представить R-матрицу как блочную матрицу 2×2 во вспомогательном пространстве. Пусть i, i' — номера блочных строк и столбцов, а j, j' — номера строк и столбцов внутри каждого блока (т.е. в квантовом пространстве). Матричные элементы R-матрицы (5.1) обозначим $R(z)_{i,j'i'j'}$.

Рассмотрим два вектора $|\alpha\rangle$, $|\beta\rangle$ в квантовом пространстве (см. (1.4)). Каждый блок R-матрицы это оператор в квантовом пространстве. Рассмотрим его действие на $|\alpha\rangle$ и последующее скалярное произведение с $|\beta\rangle$. В результате получится матрица 2×2 во вспомогательном пространстве:

$$\langle \beta | R(z) | \alpha \rangle_{i'i'} = \sum_{jj'} R(z)_{i'j'} \alpha_j \beta_{j'}. $$
Подставив матрицу (5.1), находим

$$
\langle \beta | R(z) | \alpha \rangle = \left(\begin{array}{cc}
\beta_2 \alpha_2(z) + \beta_3 \alpha_2(z) & \beta_3 \alpha_1(z) \\
\beta_2 \alpha_1(z) & \beta_3 \alpha_2(z) + \beta_2 \alpha_2(z)
\end{array} \right) = \\
= \left(\begin{array}{cc}
z(q\beta_1 \alpha_2 + \xi \beta_2 \alpha_2) - z^{-1}(q^{-1} \beta_1 \alpha_1 + \xi \beta_2 \alpha_2) & (q - q^{-1}) \beta_2 \alpha_1 \\
(q - q^{-1}) \beta_1 \alpha_2 & zq^{-1}(q^{-1} \beta_1 \alpha_1 + \xi \beta_2 \alpha_2) - z^{-1} q^{-1} \xi^{-1}(q \beta_1 \alpha_1 + \xi \beta_2 \alpha_2)
\end{array} \right),
$$
(5.4)

Здесь и ниже все скалярные произведения виды \(\langle \beta | R(z) | \alpha \rangle \) берутся в первом (квантовом) пространстве.

5.2. Р-матричное представление для L- и M-операторов. Приведем L- и M-операторы (4.12), (4.2) к форме (5.4). Найлучший результат достигается после диагонального калибровочного преобразования

$$\hat{M}_{B-C}(z) \rightarrow \hat{M}_{B-C}(z) = \left(\begin{array}{cc}
\tau_{n}^{p+1}(B) & \tau_{n}^{p+1}(B) \\
\tau_{n+1}^{p+1}(C) & \tau_{n+1}^{p+1}(C)
\end{array} \right) \hat{M}_{B-C}(z),
$$
(5.5)

$$\hat{L}_{D_{1} \rightarrow A}(z) \rightarrow \hat{L}_{D_{1} \rightarrow A}(z) = \left(\begin{array}{cc}
\tau_{n}^{p+1}(D) & \tau_{n}^{p+1}(D) \\
\tau_{n+1}^{p+1}(A) & \tau_{n+1}^{p+1}(A)
\end{array} \right) \hat{L}_{D_{1} \rightarrow A}(z)
$$
(5.6)

и свинга спектрального параметра

$$z \rightarrow k z, \quad k = \left(\frac{\lambda_{pu} \lambda_{p'u}}{\lambda_{un}} \right) \hat{+}.
$$
(5.7)

Матрицы \(\hat{M}_{B-C}(kz), \hat{L}_{D_{1} \rightarrow A}(kz) \) нужно выразить через \(\tau \)-функцию (см. пояснения в конце п. 4.1).

Для формулировки результата введем векторы

$$| \alpha(u, v, n) \rangle = \left(\begin{array}{c}
\mu \tau_{n}^{p}(u, v) \\
\mu^{-1} \tau_{n+1}^{p+1}(u, v)
\end{array} \right), \quad | \beta(u, v, n) \rangle = \left(\begin{array}{c}
\mu \tau_{n}^{p+1}(u, v) \\
\mu^{-1} \tau_{n+1}^{p+1}(u, v)
\end{array} \right),
$$
(5.8)

где

$$\mu = \left(\frac{\lambda_{un} \lambda_{pu}}{\lambda_{un} \lambda_{pu}} \right) \hat{+},
$$
(5.9)

и отождествим параметры следующим образом:

$$q = \left(\frac{\lambda_{un} \lambda_{pu} \lambda_{p'u}}{\lambda_{un} \lambda_{pu} \lambda_{p'u}} \right) \hat{+}, \quad \xi = \left(\frac{\lambda_{un} \lambda_{pu} \lambda_{p'u}}{\lambda_{un} \lambda_{pu} \lambda_{p'u}} \right) \hat{+}, \quad \xi' = - \left(\frac{\lambda_{un} \lambda_{un} \lambda_{pu} \lambda_{p'u}}{\lambda_{un} \lambda_{pu} \lambda_{p'u}} \right) \hat{+}
$$
(5.10)

(отметим, что \(\xi \xi' = -\mu^4 \). Для краткости положим \(\rho = \left[\lambda_{pu} \lambda_{un} \lambda_{pu} \lambda_{p'u} \lambda_{p'u} \lambda_{p'u} \right]^{1/2} \), тогда \(q - q^{-1} = -\lambda_{pu} \lambda_{un} \lambda_{p'u} \lambda_{p'u} \lambda_{p'u} \lambda_{p'u} \) (напомним, что \(\Lambda \) определена в (2.19)).
Теперь сравнение с (5.4) немедленно приводит к формулам

\[\langle \beta(B) | R(z; q, \xi') | \alpha(C) \rangle = -\lambda_m \rho^{-1} \tau_{n+1}^p(A) \tau_{n+1}^p(A) \mathcal{L}_{D_1-A}(kz), \]
\[\langle \beta(D) | R(z; q, \xi) | \alpha(A^3) \rangle = \Delta \rho^{-1} \tau_{n+1}^p(C) \tau_{n+1}^p(C) \mathcal{M}_{B-C}(kz). \]
(5.11)
(5.12)

Преобразование их к виду (1.8), (1.7) требует еще двух простых шагов. Во-первых, зафиксируем линию уровня \(m = 0 \) (сечение постоянного времени) на ПВР. Она вложена в трехмерную решетку как симметричная решетка с вершинами в точках \(A_l = (l, l, -l) \), \(l \in \mathbb{Z} \). Введем аналогичные обозначения и для соседних точек: \(B_l = (l + 1, l, -l) \), \(\overline{B}_l = (l + 1, l - 1, -l) \). \(D_l^* = A_{l+1} = (l + 1, l + 1, -l - 1) \) и т.д., и положим

\[\mathcal{L}_l(z) = \mathcal{L}_{D_l^*-A_l}(z), \quad \mathcal{M}_l(z) = \mathcal{M}_{\overline{B}_l-A_l}(z). \]
(5.13)

Во-вторых, заметим, что

\[\tau_{n+1}^p(u, v) \tau_{n+1}^p(u, v) = \frac{(\lambda_{pq} \lambda_{pv} \lambda_{pu} \lambda_{pr})^2}{\lambda_{pu} \lambda_{pr} \lambda_{pq} - \lambda_{pu}^2} \langle \beta(u + 1, v, n) | \alpha(u - 1, v, n + 1) \rangle \]

в силу (2.20). Это соотношение позволяет переписать (5.11), (5.12) в виде

\[\mathcal{L}_l(kz) = -\frac{\gamma \langle \beta(B_l) | R(z; q, \xi') | \alpha(C_l) \rangle}{\lambda_{uv}}, \]
\[\mathcal{M}_l(kz) = \frac{\gamma \langle \beta(B_l) | R(z; q, \xi) | \beta(B_{l-1}) \rangle}{\lambda_{uv}} \]
(5.15)
(5.16)

где

\[\langle \beta(B_l) \rangle = \begin{pmatrix} \mu \tau_{l+1}^p(l + 1, l) \\ \mu^{-1} \tau_{l+1}^p(l + 1, l) \end{pmatrix} = \begin{pmatrix} 0 \\ \mu^{-2} \end{pmatrix} \langle \beta(B_l) \rangle, \]

а константа \(\gamma \) дается формулой

\[\gamma = \left[\lambda_{vn} \lambda_{pv} \lambda_{pr} \right]^4 (\lambda_{pq} \lambda_{pr} \lambda_{pq} - \lambda_{pu}^2). \]

Эти формулы отличаются от аналогичных уравнений только несущественными обозначениями множителей. Чтобы привести обозначения в полное соответствие, достаточно просто переобозначить векторы: \(\langle \alpha(C_l) \rangle \rightarrow | \alpha(l) \rangle, \langle \beta(B_l) \rangle \rightarrow | \beta(l) \rangle \). Далее везде положим

\[\langle \alpha(l) \rangle = \begin{pmatrix} \mu \tau_{l+1}^p(l + 1, l) \\ \mu^{-1} \tau_{l+1}^p(l + 1, l) \end{pmatrix}, \quad \langle \beta(l) \rangle = \begin{pmatrix} \mu \tau_{l+1}^p(l + 1, l) \\ \mu^{-1} \tau_{l+1}^p(l + 1, l) \end{pmatrix}. \]
(5.17)

Положение этих векторов на трехмерной решетке схематически показано на рис. 5. Сечение постоянного времени \(m = 0 \) это плюшка вершины \(\ldots, A_{l-1}, A_l, A_{l+1}, \ldots \). Штриховой линией показана трансляция, которую осуществляет \(M \)-оператор (5.16).

ЗАМЕЧАНИЕ 8. \(L \)-опператор \(\mathcal{L}(z) \) (5.15) имеет две точки выражения: \(z = k \) и \(z = kq^{-1} \). В первой из них \(R \)-матрица пропорциональна оператору перестановки \(\mathcal{P} \) в \(C^2 \otimes C^2 \): \(R(1; q, \xi') = (q - q^{-1}) \mathcal{P} \). Следовательно,

\[\mathcal{L}_l(kz) = \lambda_{pq}^2 \mathcal{L}_{D^*_l-A_l}(z), \quad \mathcal{M}_l(kz) = \mathcal{M}_{\overline{B}_l-A_l}(z). \]
(5.18)
(ср. с (1.3)). Во второй точке вырождения имеем

\[L_1(kq^{-1}) = \lambda_{n} \left\{ \begin{array}{l}
\frac{1}{2}
\end{array} \right\} \frac{\beta(l)}{\tau_{n+1}(l, l) \tau_{n+1}(l, l)} \tag{5.19}
\]

где

\[
|\beta(l)\rangle = \begin{pmatrix} 0 & -\xi' \\
1 & 0
\end{pmatrix} |\beta(l)\rangle, \quad |\alpha(l)\rangle = \begin{pmatrix} 0 & -1 \\
-\xi' & 0
\end{pmatrix} |\alpha(l)\rangle.
\]

Формулы типа (5.15), (5.16) для той же самой \(L \) \(M \)-пары могут быть записаны также в терминах векторов \(|\alpha(l)\rangle, |\beta(l)\rangle \).

6. ПРЕДЕЛ НЕПРЕРЫВНОГО ВРЕМЕНИ

В этом разделе мы покажем, что \(A \)-матричная формула (1.5) для локального \(M \)-оператора является вырожденным случаем \(R \)-матричной формулы (1.7). Как следует из раздела 2, величина \(\lambda_{n} \) играет роль постоянной решетки для дискретного времени \(m \).

Посому на первый взгляд предел непрерывного времени должен означать \(\lambda_{n} \rightarrow \lambda_{u} \), т.e. \(q \rightarrow 0, \xi \rightarrow 0 \) в \(R(z; q, \xi) \), так что в согласии с (1.5) мы действительно получаем ту же формулу, но для классической \(A \)-матрицы. Однако дело обстоит не так просто. Действительно, при таком пределе \(\lim_{q \rightarrow 0} |\beta(l)\rangle = |\alpha(l)\rangle \), что в общем случае заведомо неверно.

Корректный способ перехода к пределу несколько сложнее и требует некоторых пояснений.

6.1. Предельная форма \(M \)-оператора. В пределе непрерывного времени \(L \)-оператор (5.15) остается незыблемым. Наивный предел не дает желаемого результата именно из-за того, что при изменении \(\lambda_{n} \) меняется структура ПБР, а значит, и \(L \)-
оператор. При правильном взятии предела постоянная решётки должна стремиться к нулю, не меняя \(\lambda_u \) и \(\lambda_w \).

Чтобы этого добиться, надо использовать те дополнительные возможности, которые предоставляет подход Мины [13]. Именно, введем переменную \(w \) еще одну копию кирпичного поэта и с переменной \(\lambda_w \). Билинейные уравнения из раздела 2, очевидно, остаются справедливыми при замене \(v \) и \(\lambda_v \) на \(w \) и \(\lambda_w \). Теперь можно устривать \(\lambda_w \to \lambda_u \) (что в пределе даст непрерывный поэток), не меняя \(\lambda_u \) и тем самым сохраняя все параметры непрерывными. Положим

\[
\hat{q} = \left(\frac{\lambda_{uu} \lambda_{pu} \lambda_{pu'} \lambda_{pu''}}{\lambda_{uu} \lambda_{pu} \lambda_{pu'}} \right)^1, \quad \hat{\xi} = \left(\frac{\lambda_{uu} \lambda_{pu} \lambda_{pu'} \lambda_{pu''}}{\lambda_{uu} \lambda_{pu} \lambda_{pu'}} \right)^1, \quad -\lambda_{uu} \equiv \varepsilon
\]

и рассмотрим предел \(\varepsilon \to 0 \), в котором имеем

\[
\hat{q} = 1 + \frac{\lambda_{pu} \lambda_{pu'} \lambda_{pu''}}{2 \lambda_{uu} \lambda_{pu} \lambda_{pu'}} \varepsilon + O(\varepsilon^2), \quad \hat{\xi} = 1 + \frac{\lambda_{pu} \lambda_{pu'} \lambda_{pu''}}{2 \lambda_{uu} \lambda_{pu} + \lambda_{pu'}} \varepsilon + O(\varepsilon^2). \quad (6.1)
\]

Дискретные \(M \)-операторы определяются с точностью до умножения на скалярную функцию от \(z \), не зависящую от динамических переменных. Для взятия непрерывного предела удобно нормировать \(M \)-оператор условием \(M_i^0(z) = I \) при \(\varepsilon = 0 \). Тогда следующий член разложения (перескок \(\varepsilon \)) дает локальный \(M \)-оператор для непрерывного поэтика.

\[
\text{Рис. 6}
\]

Чтобы выполнить эту программу, рассмотрим четырехмерную решётку с координатами \((u, v, w, n) \). Сечение ПВР \(m = 0 \) вложено в нее как двумерная подрешётка с вершинами \(A_l = (l, l, 0, -l), \ l \in \mathbb{Z} \). Непрерывный \(M \)-оператор в узле \(A_l \) получается разложением дискретного \(M \)-опператора \(M_{\{n\} \to \{A_l\}}(z) = \lambda_{uu} k(z - z^{-1}) I + O(\varepsilon) \) по \(\lambda \) (который осуществляется трансляцией \(A_l = (l, l, 0, -l) \to \overline{B}_l = (l + 1, l, -1, -l) \)). Передающая в нормировании \(M \)-оператор, получаем

\[
M_{\{n\} \to \{A_l\}}^0(z) = I + \varepsilon \bar{M}_l(z) + O(\varepsilon^2). \quad (6.3)
\]

На рис. 6 для наглядности изображена \((u, w)\)-плоскость в четырехмерной решётке \((v = \text{const}, \ n = \text{const})\). В пределе \(\varepsilon \to 0 \) точка \(\overline{B}_l \) стремится к точке \(A_l \). t.e. параллелограмм сжимается и целиком ложится на ось \(u \). Нас интересует описание этого процесса.
в первом порядке по ε. Используя равенства (4.3), (2.13), получаем

$$
\overline{M_1}(kz) = \frac{1}{2\lambda_{u}^{\prime}(z - z^{-1})} \left(\begin{array}{c}
\frac{1}{2} - z + \left(z + \frac{1}{2} \right) U_l \\
2\mu - 2^{p+1}(l + 1, l) \tau_{l+1}^{p+1}(l - 1, l) \\
2\mu - 2^{p+1}(l + 1, l) \tau_{l+1}^{p+1}(l - 1, l)
\end{array} \right)
$$

где

$$
U_l \equiv \frac{\tau_{l}^{p+1}(l + 1, l) \tau_{l+1}^{p+1}(l - 1, l)}{\tau_{l+1}^{p+1}(l, l) \tau_{l+1}^{p+1}(l, l)}.
$$

Определим дополнительную свободу, которая позволяет переопределить $\overline{M_1}(z)$, добавив член $h(z)I$ с произвольной скалярной функцией $h(z)$, не зависящей от динамических переменных. Это, очевидно, не меняет условие нулевой кривизны (1.6). Ниже мы используем эту свободу для переопределения M-оператора.

6.2. Сравнение с τ-матричной формулой. Вместо того чтобы найти предел правой части выражения (5.16) непосредственно, произведём вставку в (1.5) векторы (5.17) и некоторую прямую классическую τ-матрицу и, воспользовавшись формулой (5.4), сравнить результат с (6.4). В качестве первого приближения возьмем стандартную классическую τ-матрицу

$$
r^{00}(z) = \frac{1}{2(z - z^{-1})}\left(\begin{array}{ccc}
z + z^{-1} & 0 & 0 \\
0 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & z + z^{-1}
\end{array} \right),
$$

которая дает нужный результат в решеточной модели СГ. Эта матрица кососимметрическая, т.е. при $z_1 \neq z_2$ удовлетворяет свойству $r^{00}(z_1/z_2) = -r^{00}(z_2/z_1)$, где используются обозначения из п. 5.1. Подставляя векторы (5.17) и эту τ-матрицу в (1.5) и пользуясь уравнением (2.21), находим

$$
\frac{\lambda_{p}^{\prime} \lambda_{u} - 3}{2\lambda_{u}^{\prime} \lambda_{u} \lambda_{u}^{\prime}} \left(\begin{array}{c}
\langle \beta | r^{00}(z) | \alpha(l - 1) \rangle \\
\langle \beta | \alpha(l - 1) \rangle
\end{array} \right) - \overline{M_1}(kz) = \frac{1}{2} \left(\begin{array}{c}
\lambda_{u}^{\prime} \\
0
\end{array} \right) - \left(\begin{array}{c}
\lambda_{p}^{\prime} \\
0
\end{array} \right)
$$

где в правой части собраны члены, нарушающие нужное нам равенство. Их достаточно простой вид говорит о том, что наше первое приближение не так уж плохое. Чтобы получить в правой части нуль, надо ввести две поправки: одну в $\overline{M_1}(z)$, а другую в r^{00}. Первую из них это, скорее, вопрос определения непрерывного M-оператора, который мы имеем право переопределить, воспользовавшись отмеченной выше свободой:

$$
M_1(z) \equiv \overline{M_1}(z) \pm \frac{1}{4}(\lambda_{p}^{\prime} + \lambda_{u}^{\prime} - \lambda_{u}^{\prime}) I.
$$

(6.7)
Вторая поправка более важна. Обозначим через \(r^{(k)}(z) \) модифицированную \(r \)-матрицу:

\[
r^{(k)}(z) = r^{(0)}(z) + \kappa I \otimes \sigma_3, \tag{6.8}
\]

\[
\kappa = \frac{\lambda_{p'\mu} \lambda_{\mu p} - \lambda_{\mu p} \lambda'_{p}}{2(\lambda_{\mu p} \lambda'_{p} - \lambda_{p}^{2})}. \tag{6.9}
\]

Очевидно, \(\kappa \)-член нарушает кососимметричность. Тем не менее \(r^{(k)}(z) \) является классической \(r \)-матрицей, так как удовлетворяет классическому уравнению Янга-Бацкера, записанному в форме, модифицированной применительно к не обязательно кососимметрическим \(r \)-матрицам [28]:

\[
\left[r^{(k)}_{12} \left(\frac{z_1}{z_2} \right) , r^{(k)}_{13} \left(\frac{z_1}{z_2} \right) \right] + \left[r^{(k)}_{12} \left(\frac{z_1}{z_2} \right) , r^{(k)}_{23} \left(\frac{z_2}{z_3} \right) \right] + \left[r^{(k)}_{23} \left(\frac{z_2}{z_3} \right) , r^{(k)}_{13} \left(\frac{z_1}{z_3} \right) \right] = 0. \tag{6.10}
\]

Учтите эти поправки, мы перепишем (6.6) как \(r \)-матричную формулу:

\[
M_{l}(kz) = \frac{\lambda_{p} \lambda'_{p} - \lambda_{p}^{2}}{2 \lambda_{p} \lambda_{p} \lambda'_{p} - \lambda_{p}^{2}} \frac{(\beta(l) | r^{(k)}(z) | \alpha(l - 1))}{(\beta(l) | \alpha(l - 1))}. \tag{6.11}
\]

При \(\kappa = 0 \) (т.е. \(\lambda_{p} \lambda'_{p} = \lambda_{p} \lambda_{p} \lambda'_{p} \)) мы возвращаемся к стандартной \(r \)-матрице. (Именно этот случай реализуется в модели СГ на решётке с непрерывным временем.) Заметим, что в этом случае \(\xi = 1 + O(z^2) \) (см. (6.2)) и классическая \(r \)-матрица получается как "росток" квантовой:

\[
r^{(0)}(z) = \lim_{z \to 0} \frac{R(z; g, \tilde{g}) - (z - z^{-1}) I \otimes I}{(q - 1)(z - z^{-1})}.
\]

Замечание 9. Появление некососимметричной \(r \)-матрицы (6.8) есть знак того, что \(L \)-опператор при \(\kappa \neq 0 \) ультразрацекал. В этом случае задачи Пуассона для элементов матрицы монодромии \(T \) даются общей квадратичной алгеброй задачи Пуассона

\[
\{T_1, T_2\} = r^{+}_{12} T_1 T_2 + T_1 s^{+}_{12} T_2 - s^{-}_{12} T_1 - T_1 T_2 r^{-}_{12},
\]

изучавшей (вместе с ее квантовыми аналогами) в работах [29 31]. Матрицы \(r^{\pm}, s^{\pm} \) удовлетворяют ряду условий, обеспечивающим антисимметрию и выполнение тождества Якобы. Кроме того, в интегрируемых моделях выполняется условие \(r^{+} + s^{+} = s^{-} + r^{-} \). При этих условиях (некососимметричная) \(r \)-матрица \(r^{+} - s^{-} \) удовлетворяет уравнению Янга-Бацкера в форме (6.10). В нашем случае четвёрка матриц \(r^{+}, s^{+}, s^{-}, r^{-} \) выглядит следующим образом: \(r^{+} = r^{(0)}, s^{+} = -\kappa \sigma_3 \otimes I, s^{-} = -\kappa I \otimes \sigma_3, r^{-} = r^{(0)} + \kappa (I \otimes \sigma_3 - \sigma_3 \otimes I) \), и, таким образом, \(r^{+} - s^{-} = r^{(k)} \).

7. ЗАКЛЮЧЕНИЕ

Основной результат этой работы – \(R \)-матричное представление (5.15), (5.16) локальной \(L \)-\(M \)-пары для классической дискретной модели МГ. На наш взгляд, тот факт, что
типичные квантовые R-матрицы естественным образом появляются в чисто классической задаче, важен и интересен сам по себе. Чтобы обнаружить их в классических дискретных задачах, нужно перейти к билинейному формализму Хироты и возвращаться к интерпретации дискретных потоков, данной Мичой. Мы также показали, что компоненты векторов $|\alpha\rangle$, $|\beta\rangle$ (представляющих L-оператор и точке выражения) являются τ-функциями.

Напомним, что квантовое уравнение Янга-Бакстера уже возникало в связи с чисто классическими интегрируемыми задачами, хотя и в другом контексте [32, 33], однако класс его решений, по-видимому, очень далек от R-матриц известных квантовых интегрируемых моделей. В нашей конструкции роль квантового уравнения Янга-Бакстера останется пока неясной. Не используя его явно, мы показали, что одна из наиболее популярных квантовых R-матриц трисимметрическая R-матрица спиновой XXZ-цепочки участвует в представлении кривизны для классических дискретных уравнений. Мы полагаем, что объяснение этого факта будет тем не менее основано на квантовом уравнении Янга-Бакстера.

Стоит подчеркнуть, что параметр квантовой деформации q в нашем контексте не имеет прямого отношения к квантованию. Он определяется размером и формой элементарной ячейки ПВР, на которой задана классическая модель. Было бы интересно увидеть эту скрытую R-матричную структуру на квантовом уровне. Векторы $|\alpha\rangle$, $|\beta\rangle$ при этом будут иметь операторные компоненты. Если бы такое обобщение действительно существовало, это бы означало, что с квантовой интегрируемой моделью ассоциированы две разные R-матрицы, а не одна. В то же время это могло бы служить некоторым объяснениям полученных нами R-матричных формул: в классическом пределе выражается только одна из этих R-матриц, а вторая остается квантовой.

Среди других связанных с этим проблем отметим следующие. Прежде всего, необходимо провести детальное сопоставление с гамильтоновским формализмом, которое в нашем изложении отсутствует. Было бы чрезвычайно полезно точнее охарактеризовать алгебру свобод Пуассона для элементов L-оператора (4.12) (в общем говоря, не ультрасложную) и, взяв ее в качестве отправной точки, дать альтернативный вывод τ-матричной формулы (6.11) для M-оператора. Другим нерешенной задачей найти аналог неэкспоненциальной производящей функции (1.2) M-операторов для систем в дискретном времени. Наконец, было бы интересно распространить всю конструкцию на самую общую модель с матричной L M-парой 2×2 дискретный аналог уравнения Ландау Лифшица (магнитный тип XYZ). При этом спектральный параметр — это точка эллиптической кривой, и не вполне ясно, как билинейный формализм обобщается на этот случай (как, например, будет выглядеть условие редукции (3.2)).

Благодарности. Автор благодарен П. Вигману, А. Волкову, И. Кричеверу, О. Липану и С. Харчеву за полезные обсуждения, а также Т. Астаховой за помощь в подготовке рисунков. Эта работа была частично поддержана грантом РФФИ № 05-02-16477.
Список литературы

Поступила в редакцию 28.IV.2000 г.