А. Г. Дюбина, И. В. Полтерович, Структуры на бесконечности гиперболических пространств, УМН, 1998, том 53, выпуск 5(323), 239–240

DOI: https://doi.org/10.4213/rm80
СТРУКТУРЫ НА БЕЗКОНЕЧНОСТИ
ГИПЕРБОЛИЧЕСКИХ ПРОСТРАНСТВ

В. МОСКОВСКОМУ МАТЕМАТИЧЕСКОМУ ОБЩЕСТВЕ

А. Г. Дюйина, И. В. Потеревич

Цели этой работы является явное описание структуры бесконечности двух классов гиперболических пространств — многообразий отрицательной кривизны и гиперболических групп.

Пусть X — метрическое пространство с функцией расстояния d(x). На интуитивном уровне, понятие "структуры на бесконечности" пространства X отражает то, что видит наблюдатель, смотрящий на X из "бесконечно удаленной точки" (см. [1]). Возможные математические строения интерпретации этого понятия представлены в определениях 1-3.

ОПРЕДЕЛЕНИЕ 1. Будем говорить, что пространство (X, d(x)) можно изометрически вложить на бесконечность и в метрическое пространство X, если найдется последовательность положительных чисел εᵢ → 0, такая, что для каждой точки t ∈ T существует такая конечная последовательность {xᵢ}ᵢ, i = 1, 2, ..., точек в пространстве X, что для любых t₁, t₂ ∈ T имеет место соотношение d(xᵢ, xᵢ₊₁) = d(t₁, t₂).

Пространство T называется геодезическим (см. [2], [3]), если для любых двух точек t₁, t₂ ∈ T на расстоянии a = d(T(t₁, t₂)) друг от друга, существует изогнутая кривая y: [0, a] → T такое, что y(0) = t₁, y(a) = t₂.

ОПРЕДЕЛЕНИЕ 2. Асимптотическим подмножеством (см. [2], [3]) метрического пространства X называется геодезическое метрическое пространство (T, d(T)), любое конечное подмножество которого можно изометрически вложить на бесконечность и в X.

Напомним, что неявная в ультрафильтре о есть конечно-аддитивная мера, определенная на всех подмножествах I ⊆ N так, что ω(I) равно 0 или 1 для любого I и ω(1) = 0, если I конечное. Предположим, что ультрафильтр d(ω) для какой ограниченной функции ω: N → R однозначно определяется следующим условием: для любого ε > 0 ω(∩ {i ∈ I | ω(i) ∈ ε}) = 1.

ОПРЕДЕЛЕНИЕ 3 ([1]). Зафиксируем точку x₀ ∈ X и рассмотрим множество последовательностей f: N → X, таких что d(X(x₀, f(i)) ≤ const f. Каждая пара последовательностей f₁, f₂ может сопоставить функцию δ f₁, f₂ = d(X(f₁(i), f₂(i)) = δ(X(f₁, f₂)). Будем считать последовательности f₁, f₂ эквивалентными, если предел δ f₁, f₂ = 0. Множество T к показуем, что снабженное расстоянием d(T, f, g) = δ f, g, является метрическим пространством, называемым асимптотическим контрактом пространства X по отношению к нулевому ультрафильтру ω: T = Conω X.

Заметим, что любой асимптотический конус метрического пространства имеет и его асимптотический подмножества. Всякий асимптотический конус есть полное метрическое пространство [4]. Следовательно, асимптотическая структура существует у X свойства одномерности и геодезичности (см. [5], [6], [7]).

ОПРЕДЕЛЕНИЕ 4 ([2], [3]). Геодезическое метрическое пространство X называется δ-геодезическим, если для любого геодезического трека расстояния от точки на одной из его сторон до объединения двух других сторон не превосходит некоторого фиксированного δ > 0. Если конечное значение δ невозможно, говорят просто, что X — δ-геодезическое.

М. Гросюн был доказано, что любой асимптотический конус и подмножество δ-геодезического метрического пространства есть δ-геодезическое пространство, т.е. отрезок (см. [1], [8]). В результате [7] определены функциональные пространства S и D, являющиеся вещественными деревьями, вставляемыми в каждый точку и служащие асимптотическими подмножествами ширины Лобачевского. Подобные конструкции рассмотрели также В. Берестовский [8] и А. Ширванистан [9]. Оказывается, что Иртрура на бесконечности любого многообразия отрицательной кривизны (под этим мы понимаем полное одномерное рационально многообразие, секционные кривые которого ограничиваются сверху некоторым k < 0) полностью описывается неполным пространством функций.

Обозначим через А множества функций f: [0, ρ] → [0, 1], 0 < ρ < ∞, таких, что 1) f(0) = 0; 2) функции f "кубоочность-справная", т.е. для всякого t ∈ [0, ρ] существует ε > 0 такое, что f(t + ε) = const. Определим на A расстояние: d(1, 2) = (ρ₁, ρ₂) + (ρ₂, ρ₁), где ε = sup{|f(t) | t | f(t') = f(t') ≤ ρ₁ | t' < t}. Каждое разделение функций f₁, f₂ (см. [7]).

Гладкое отображение A от пространства S и D заключается в том, что A состоит из гладко-геодезических функций (быть может, с бесконечной числом интервалов непрерывности) и за счет этого становится полным метрическим пространством.
ТЕОРЕМА 1. Метрическое пространство (A, d_A) полное. Оно является вещественным деревом, причем вложимость каждой его точки (т.е. мощности множества компонент связности ее дополнения) есть конечность.

Заметим, что всякое полное вещественное дерево, такое что каждая его точка имеет вложенность континуум, изометрично A. Пространство A однородно и является "максимальным" среди деревьев мощности не более чем континуум — всякое такое дерево можно изометрично вложить в A.

Сформулируем основной результат настоящей работы:

ТЕОРЕМА 2. Пространство A можно изометрически вложить в бесконечность в любой многообразие ограниченной кривизны.

СЛЕДСТВИЕ 1. Любое вещественное дерево не более чем континуальной мощности изометрически вкладывается в бесконечность в многообразие ограниченной кривизны. Обратно, всякое геодезическое метрическое пространство, вкладывающееся в бесконечность в многообразие ограниченной кривизны есть вещественное дерево не более чем континуальной мощности.

СЛЕДСТВИЕ 2. Любое вещественное дерево является асимптотически подконусом многообразия ограниченной кривизны.

ТЕОРЕМА 3. Любая асимптотически конус многообразия ограниченной кривизны изометрична A.

В частности, это означает, что асимптотические конусы таких многообразий изометричны и не зависят от выбора ультраметрики. Оказывается, что это верно и для гиперболических групп.

Конечно-порожденная группа является гиперболической, если ее график относительно некоторой системы образующих является гиперболическим пространством (см. [3], [2]).

Следующая теорема показывает, что гиперболические группы можно характеризовать не только в терминах их свободных подгрупп или гранич (см. [3]), но и в терминах их асимптотических конусов.

ТЕОРЕМА 4. Для любой гиперболической группы G выполнено одно из следующих трех условий:

(i) для всякого w конус $C_{1,w} G$ есть точка \iff конечна \iff граница Γ пуста;

(ii) для всякого w конус $C_{1,w} G$ изометричен \mathbb{R} \iff G содержит бесконечную циклическую подгруппу конечного индекса \iff граница Γ состоит ровно из двух элементов;

(iii) для всякого w конус $C_{1,w} G$ изометричен A \iff G содержит свободную подгруппу с двумя образующими \iff граница Γ имеет мощность континуум (в этом случае говорят, что G негомологически).

Аutors выражают глубокую благодарность А. Шнирельману за плодотворные обсуждения, послужившие стимулом к написанию этой работы.

СПИСОК ЛИТЕРАТУРЫ

Санкт-Петербургский государственный университет; Моско́вский государственный университет им. М. В. Ломоносова 19,08,1998 и Институт Вейсмана (Израиль)