А. А. Феликсон, О сигнатуре Терстона, VMH, 1997, том 52, выпуск 4(316), 217–218

DOI: https://doi.org/10.4213/rm877
Впервые [4] В. Терстон рассмотрел пространство \(E(a_1, \ldots, a_n) \) таких евклидовых метрик на сфере \(S^2 \), у которых особенности являются коническими точками с заданными кривизнами \(2\pi a_j, 0 < a_i < 1, i = 1, \ldots, n, n > 3 \). Числа \(a_i \) называют сигнатурами евклидовой метрики с особенностями.

Хорошо известно, что \(\sum a_i = 2 \). Нормируя метрики с данной сигнатуруй, условием равенства одинаковых площадей сферы, В. Терстон оформили условия на сигнатуру, при которых пространство \(E(a_1, \ldots, a_n) \) окладывается комплексными гиперболическим орбифолом конечного объема, т.е. фактор- пространство \(B^n / \Gamma \) компактного шара \(B^n \) по дискретной решетке его автоморфизмов. Эти условия таковы:

1. \(a_i \in \mathbb{Q}, 0 < a_i < 1, i = 1, \ldots, n, (a_i - p_i/q_i, p_i < q_i \in \mathbb{N}); \)
2. \(\sum_{i=1}^n a_i = 2; \)
3. \(a_i + a_j < 1, a_i \neq a_j \Rightarrow \frac{1}{a_i} - \frac{1}{a_j} \in \mathbb{Z} \) (т.е. \(a_i + a_j = 1 - \frac{1}{k_{ij}} \) и \(k_{ij} \in \mathbb{Z} \));
4. \(a_i + a_j < 1, a_i \neq a_j, i \neq j \Rightarrow \frac{1}{a_i} - \frac{1}{a_j} \in \frac{1}{2} \mathbb{Z} \) (т.е. \(a_i + a_j = 1 - \frac{1}{k_{ij}} \) и \(k_{ij} \in \mathbb{Z} \)).

Возникает естественная задача: какую кривизну имеют такие сигнатуры? Два, \(n = 4 \) существует бесконечное число сигнатуров Терстона (см. [2], [4]). Для \(n \geq 5 \) список таких сигнатуров конечен. Он перечислен в книге [5], но был недоступен. Позднее он был упущен Терстоном, сделавшим полный компьютерный перебор для значений \(a_i \), и в которых наименьший общий знаменатель не превышает 256. Но не было доказано, что нет таких сигнатуров с общим знаменателем, большим 256. Основной результат данной работы — доказательство их отсутствия, основанное на элементарных теоремах-и-численике соображений.

Автор благодарит за помощь В. Б. Шварцмана.

Обозначения. Перепишем условие (2), сокращив в равные слагаемые и разделив их по основанию:

\[l_1 a_1 + \cdots + l_r a_r + a_{r+1} + \cdots + a_{r+s} = 2, \]

где \(a_i \neq a_j \) при \(i \neq j, l_i > 1, l_i \in \mathbb{N}; a_1 < a_2 < \ldots < a_r; a_{r+1} < \cdots < a_{r+s}. \)

Все буквы, кроме \(a_i \), в дальнейшем означают натуральные числа.

Ограничение числа слагаемых.

Лемма 1. Пусть \(a_1 < a_2 < a_3 \) и набор \(a_i \) является решением задачи. Тогда либо \(a_1 + a_2 + a_3 > 1 \), либо \((a_1, a_2, a_3) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) \) и \(a_4 \leq 6 \) (а значение, \(n \leq 12 \)).

Доказательство. Пусть \(a_1 < a_2 < a_3 \) — наименьшие различные числа в наборе. Пусть \(a_1 + a_2 + a_3 \leq 1 \). Тогда \(a_i + a_j < 1 \) (при \(i, j \in \{1, 2, 3\}, i \neq j \Rightarrow a_i + a_j = 1 - \frac{1}{k_{ij}}, a_1 + a_3 = 1 - \frac{1}{k_2}, a_2 + a_3 = 1 - \frac{1}{k_2} \)).

Так как \(a_1 + a_2 < a_1 + a_3 \) и \(a_1 + a_3 \), то \(k_1 \leq k_2 \leq k_3 \).

Так как \(a_1 + a_2 + a_3 \leq 1 \), то \(3 - \frac{1}{k_2} - \frac{1}{k_3} \leq 2, \text{ t.e. } 1 \leq \frac{1}{k_2} + \frac{1}{k_3} + \frac{1}{k_1} \).

Так как \(k_1 < k_2 < k_3 \), то тройка \((k_1, k_2, k_3)\) имеет одно из следующих значений: a) \((2, 3, 4),\)
b) \((2, 3, 5)\), с) \((2, 3, 6)\).

Выражай \((a_1, a_2, a_3)\) через \((k_1, k_2, k_3)\), получим:

В случае a) \((\frac{1}{k_1}, \frac{1}{k_2}, \frac{1}{k_3})\), в случае b) \((\frac{1}{k_1} - \frac{2}{k_2}, \frac{2}{k_2}, \frac{1}{k_3})\), в случае c) \((\frac{1}{k_1}, \frac{1}{k_2}, \frac{1}{k_3})\).

В случаях a) и b) по условию (4) \(l_1 - 1 > l_2 - 1 \). Значит, \(a_5 \geq a_4 \geq a_3 \). В случае a) \(a_5 < 2 - (a_1 + a_2 + 2a_3) = \frac{1}{k_1} < a_3 \) — противоречие.

В случае b) противоречий условий (1)-(4) убеждается, что \(a_4 \neq a_3 \). Но тогда \(a_1 + a_2 + a_4 > 1 \) (вследуем иначе \(a_1 + a_2 + a_4 = 1 \)).

Т.е. \(a_3 = 1 - \frac{k_1}{2}, a_2 + a_3 = 1 - \frac{k_1}{2}, a_1 + a_2 + a_3 = 1 - \frac{k_1}{2} \Rightarrow a_5 = \frac{31}{m} - \frac{1}{m} > \frac{11}{m} = \frac{1}{m} - \frac{1}{m} \Rightarrow k \leq 6 \Rightarrow k = 5 \) (инчо же не удовлетворяют уравнению \(\frac{2}{k} - \frac{1}{k} \) — противоречие.

В случае c) выше только показано, что \(r + s < 4 \) (тогда \(a_4 = 2 - \sum_{i=1}^3 l_ia_i \) и \(a_4 \leq 6 \).

Действительно, если \(a_1 < a_2 < a_3 < a_4 < a_5 \), то \(a_4 + a_5 > 1 \) и \(\sum a_i > 2 \).
Замечание 1. В дальнейшем можно считать, что \(a_1 < a_2 < a_3 \Rightarrow a_1 + a_2 + a_3 > 1 \).

Лемма 2. \(r \leq 2 \). \(\sum_{i=1}^{r} l_i \leq 12 \).

Доказательство. Пусть \(r \geq 3 \). Тогда \(\sum_{i=1}^{r} l_i \geq 1 \), что невозможно по лемме 1 (с учетом замечания). Значит, \(r < 3 \).

Так как при \(i \leq r \) либо \(a_i \geq \frac{1}{2} \), либо \(a_i = \frac{1}{3} \leq \frac{1}{2} \leq \frac{2}{3} - \frac{1}{2} = \frac{1}{6} \), то \(\sum_{i=1}^{r} l_i \leq 12 \).

Лемма 3. \(r + s < 6 \).

Доказательство. Пусть \(r + s \geq 6 \). По лемме 1 \(a_1 + a_2 + a_3 > 1 \) и \(a_4 + a_5 + a_6 > 1 \), что противоречит тому, что \(\sum_{i=1}^{6} a_i \leq 2 \).

Ограничение знаменателей.

Для каждого из возможных значений \(r + s \) надо показать, что \(q_i < 200 \). Метод доказательства продемонстрирован на примере простого случая - \(r + s = 5 \).

Лемма 4 (рекурсивная). Пусть \(\frac{1}{r} \geq \frac{1}{12} + \frac{1}{m} \) или \(\frac{1}{r} \geq \frac{1}{2} + \frac{1}{m} \).

1) Пусть \(\frac{1}{r} = \frac{1}{12} + \frac{1}{m} \). Тогда с точностью до перестановок пройдя \((k, l, m) \) при

является одно из следующих значений: \((6, 6, 1), (5, 5, 10), (4, 8, 8), (4, 6, 12), (4, 5, 20), (3, 12, 12), (3, 10, 15), (3, 9, 18), (3, 8, 24), (3, 7, 42) \).

2) Пусть \(\frac{1}{r} = \frac{1}{2} + \frac{1}{m} \) и \(k < l \leq m \). Тогда пройдя \((k, l, m) \) при

является одно из следующих значений: \((6, 10, 15), (6, 9, 18), (6, 8, 24), (6, 7, 42), (5, 12, 20), (5, 10, 30), (5, 9, 45), (5, 8, 120), (4, 21, 28), (4, 20, 30), (4, 18, 36), (4, 16, 48), (4, 16, 60), (4, 14, 84), (4, 13, 156) \).

Доказательство. Докажем первое утверждение леммы. Пусть \(k \leq l \leq m \). Тогда \(\frac{1}{r} \leq \frac{1}{k} \leq \frac{1}{3} \).

При каждом допустимом значении \(k \) имеем \(\frac{1}{k} \geq \frac{1}{r} \geq \frac{1}{12} + \frac{1}{m} \). Проверка для всех допус

тимых пар \((k, l) \) (их конечное число) условие \(\frac{1}{r} > \frac{1}{k} \) и \(\frac{1}{r} > \frac{1}{m} \) сводится к видимым решениям.

Второе утверждение леммы доказывается аналогично.

Лемма 5. Пусть \(r + s = 5 \). Тогда \(q_i \leq 84 \).

Доказательство. Пусть \(a_1 < a_2 < a_3 < a_4 < a_5 \). Пусть \(r > 0 \). Тогда по лемме 1

\(a_1 + a_2 + a_3 > 1 \) и \(a_4 + a_5 > 1 \), что противоречит тому, что \(\sum_{i=1}^{5} a_i \leq 2 \). Значит, \(r = 0 \).

Так как суммы любых трех различных слагаемых больше единицы, то сумма двух оставшихся \(\leq \frac{1}{3} \), удовлетворяют условию \(\frac{1}{r} > \frac{1}{k} \), \(\frac{1}{r} > \frac{1}{m} \) и \(\frac{1}{r} > \frac{1}{12} \).

Так как \(4 - 2(a_1 + a_2) + (a_3 + a_4) + (a_5 + a_6) \), то \(\frac{1}{r} > \frac{2}{m} + \frac{1}{12} \). Так как \(\frac{1}{r} > \frac{2}{m} + \frac{1}{12} \) - наиболее из строго убывающих слагаемых, то \(\frac{1}{r} > \frac{3}{k} \), т.е. \(k = 3 \) или \(k = 4 \).

Аналогично, при разбиении \(4 - 2(a_1 + a_3) + (a_2 + a_4) + (a_5 + a_6) \) получаем, что \(w < 3 \) или \(w = 4 \). Так как \(k \leq w \), то \(k = 3 \), \(w = 4 \). Итак, \(\frac{1}{r} > \frac{1}{m} + \frac{1}{12} \) и \(\frac{1}{r} = \frac{1}{m} + \frac{1}{12} \) не превосходит 42. Выражение \(a_3 + a_4 + a_5 \) и \(a_2 + a_4 + a_5 \) через эти числа \(k \) и \(w \), получаем, что общий знаменатель чисел \(a_2, a_3, a_4 \) и \(a_5 \) не превосходит 84. Но тогда \(nq_i \geq 84 \).

Список литературы

Примечание после статьи

02.07.1997