Ф. В. Найхоф, О. А. Чалых, Биспектральные кольца разностных операторов, 
*УМН*, 1999, том 54, выпуск 3(327), 173–174

DOI: https://doi.org/10.4213/rm165

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и 
согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
27 апреля 2019 г., 01:22:28
БИСПЕКТРАЛЬНЫЕ КОЛЬЦА РАЗНОСТНЫХ ОПЕРАТОРОВ

Ф. В. Найф, О. А. Чалых

Рассмотрим следующий специальный случай бро-геометрической процедуры, предложенной И. М. Крячковым [1], которая позволяет строить коммутативные кольца разностных операторов. А именно, мы фиксируем 2N комплексных параметров \( k_1, \ldots, k_N, \varepsilon_1, \ldots, \varepsilon_N (\varepsilon_i \neq 0) \), а также \( \mu, \omega \), так, что \( q = e^{-i \mu \omega} \neq 1 \), и пусть, \( \psi(k, \xi) \) — функция двух комплексных переменных со следующими аналитическими свойствами по \( k \):

1) \( \psi \) имеет вид \( \psi = e^{k \xi} \left( 1 + \sum_{i=1}^{N} \frac{a_i(k)}{e^{i \mu k_i} - e^{i \mu k_i}} \right) \).
2) Для любого \( i = 1, \ldots, N \) 

\[ \mu \neq 0 \text{ имеет коэффициенты, которые зависят только от } k_i, \xi, k_j, \xi - k_j \\ \text{ и } \mu, \omega \text{ и удовлетворяют уравнению } e^{i \mu k_i} + e^{i \mu k_j} = 0. \]

Легко показать, что такая функция единственна, и для каждого тригонометрического многочлена \( p \) от \( e^{i \mu k} \) такового, что \( p(k_i) = p(k_i - \omega) \) при всех \( i \), существует разностный оператор \( \mathcal{L}_p \) по \( \xi \) с шагом \( \mu \) такой, что \( \mathcal{L}_p \psi = p(k) \psi \) (см. [1]). Все такие операторы коммутативны, а их коэффициенты сопрягаются с \( e^{i \mu k} \). Функция \( \psi \) является функцией Бейкера-Ахлера, относящейся в случае Бейкера аналитической эйлеровой кривой с \( N \) двойными точками.

Наше первое наше блестящее, мотивированное результатом Дэ. Числова [2], [3], заключается в том, что для параметров \( k_i, \varepsilon_i \) общего положения такая функция Бейкера-Ахлера удовлетворяет также некоторым разностным уравнениям по \( k \) с шагом \( \omega \) и коэффициентами, которые зависят только от \( \mu, \omega \). Таким образом, мы получаем биспектральные разностные операторы псевдо-Дюседерма-Грассбаха [4].

Теорема. Для параметров \( k_1, \ldots, k_N, \varepsilon_1, \ldots, \varepsilon_N \) общего положения функция Бейкера-Ахлера \( \psi(k, \xi) \) имеет следующие аналитические свойства по \( \xi \), а именно, существует \( \xi_1, \ldots, \xi_N, \nu_1, \ldots, \nu_N \) такие, что \( \psi \) удовлетворяет условиям 1-2) после перестановки \( (k, \varepsilon_i, k_i, \mu, \omega) \rightarrow (\xi, k_i, \varepsilon_i, \mu, \omega) \).

Простой способ понять, какое значение \( (\xi, \nu) \) и \( (k, \varepsilon) \) от \( (\xi, \nu) \) по \( (k, \varepsilon) \). Включение в использование параметра \( \psi \) формирования матрицы \( X, Z = \text{Gl}_N(\mathbb{C}) \) таких, что \( rk(XZ - qZX) = 1 \). Последнее условие является естественным q-аналогом матричного соотношения и [3]. Формула для \( \psi \)-функции в терминах \( (X, Z) \) выглядит следующим образом:

\[
\tilde{\psi} = e^{-k \xi} \psi = \det^{-1}((XZ - xZ - zX + zxI) \det(qZX - xZ - zX + zxI)).
\]

В нашем случае \( q = e^{-i \mu \omega}, z = e^{i \mu k}, x = e^{i \xi}, Z = \text{diag}(e^{i \mu k}, \ldots, e^{i \mu k}), X_j = \varepsilon \).

Таким образом, аналогично [3], соответствующие \( e^{i \xi \tilde{k}} \) являются собственными числами \( X, \nu \) и \( \nu \) только находятся из вида матрицы \( (XZ - qZX)^{-1} \) в собственном базисе для \( X^k \).

Заметим, что подобный факт состоит в том, что значение \( X, Z \rightarrow \psi \) по-видимому, допускает продолжение на все пары обратимых матриц \( X, Z \) при \( \text{rk}(XZ - qZX) = 1 \). Соответствующий класс \( \psi \)-функций, конечно, шире класса функций со свойствами 1-2). Их аналитические свойства по \( z = e^{i \mu k} \) могут быть описаны следующим образом.

Пусть \( \phi^* \) обозначает линейный функционал, насыщающий значение \( r \)-й производной в точке \( z = \lambda: \phi^*(f) = f^{(r)}(\lambda), \lambda \geq 0 \). Для данного \( \lambda \in \mathbb{C}^n \) рассмотрим линейное пространство \( C_{\lambda} \) функционалов, являющихся конечными линейными комбинациями вида \( \sum_{r \in \mathbb{Z}_+} e^{r \lambda} \phi^* q^r \) с конечными коэффициентами \( c_r \). Эти функционалы определяются как \( \phi \neq 0 \). Теперь пусть естественный порядок числителя \( \lambda \in \mathbb{C}^n \) таких, что \( \lambda / \lambda_j \neq q^r \) для целых \( r \), и затем для каждого \( \lambda_j \) выберем множество \( \phi_{\lambda_j} \) с дополнительным свойством \( D \)-инвариантности, \( DW_{\lambda_j} \subset W_{\lambda_j} \) т.д., что \( D \) действует следующим образом:
$D(\delta^p) = \sum c^p \delta^{p-1}$. С каждым из этих подпространств $W_{\lambda_i}$ мы связываем множество $Q_{\lambda_i}$ по следующему рецепту: пусть $B(W_{\lambda_i})$ есть множество пар $(r, s)$, для которых существует элемент $c = \sum c^p \delta^p \phi$, из $W_{\lambda_i}$ с $c^p \neq 0$ и $c^p \phi = 0$ для $b < s$ и для $b = s, a > r$. Тогда соответствующий множитель $Q_{\lambda_i}(z) = \prod_{(r, s) \in B(W_{\lambda_i})} (z - \lambda_i q^r)$, заметим, что $deg Q_{\lambda_i} = \dim W_{\lambda_i}$.

Для любого такого набора данных $W = \{W_{\lambda_i}\}$ рассматриваем соответствующую функцию Бейкера-Ализера $\psi_W = \psi_W(n, z)$, $n \in \mathbb{Z}, z \in \mathbb{C}$, которая имеет следующий вид для $z$:

1. $\psi_W$ имеет вид $\psi_W = z^n (z^N + a_1 z^{N-1} + \cdots + a_N)/Q_W(z)$, где $a_i$ зависят от $n$.
2. $Q = deg Q_W$ и $Q_W$ есть произведение множителей, связанных с каждым из $W_{\lambda_i}$.

Гипотеза. Класс функций Бейкера-Ализера $\psi_W$, возникающих из всех возможных данных $W = \{W_{\lambda_i}\}$, находится в вполне интегральном соответствии с полями образующих матриц $X, Z$ таких, что $rk(XZ - qZX) = 1$, по модулю GL-действия $(X, Z) \sim (CX^{-1}C, C^{-1}ZC^{-1})$. Это соответствствие задается формулой $(X, Z) \rightarrow \psi(n, z) = z^n\psi$, где $\psi$ определено (1) $e x = q^{-n}$.

Эта гипотеза, являющаяся $q$-аналогом основного результата замечательной работы [3], сразу приводит к биектировке соответствующих колец разрешенных операторов. Отметим, что роль, которую в [3] играют уравнения КП и системы Калоджеро-Мозера, в нашем случае выполняют разрешное КП и тригональная система Ражеварска с дискретной диагональю, предложенная в работе [5]. В наших терминах это динамика выглядит так: $(X, Z) \rightarrow (Z + pq X (Z + pq)\cdot (Z, Z), p$ – параметр (см. [5]).

Работа были частично поддержана INTAS (грант № 96-07-70) и РФФИ (грант № 99-01-00090). Второй автор благодарен Королевскому Обществу (Великобритания) за поддержку его однодневного визита в Loughborough University (UK), где и была начата эта работа.

СПИСОК ЛИТЕРАТУРЫ


The University of Leeds, Leeds, UK;

Приношу редакторам

Московский государственный университет им. М. В. Ломоносова

23.04.1999