А. А. Боровков, Об асимптотике распределений времен первого прохождения II, *Матем. заметки*, 2004, том 75, выпуск 3, 350–359

DOI: https://doi.org/10.4213/mzm37
Математические заметки

Том 75 Выпуск 3 Март 2004

УДК 519.214

ОБ АСИМПТОТИКЕ РАСПРЕДЕЛЕНИЙ
ВРЕМЕН ПЕРВОГО ПРОХОЖДЕНИЯ II

А. А. Боровков

В работе найдена асимптотика и получены оценки для распределения времен первого прохождения нулевого уровня (в обоих направлениях) случайным блужданием с непуленным сносом.

Библиография: 22 названия.

1. Введение

Настоящая работа является продолжением [1]. Пусть \(\xi, \xi_1, \xi_2, \ldots \) — независимые одинаково распределенные случайные величины, \(S_n = \sum_{j=1}^{n} \xi_j \),

\[
\eta_+(x) = \min\{k: S_k > x\}, \quad \eta_-(x) = \min\{k \geq 1: S_k \leq -x\},
\]

\(x \geq 0, \eta_{\pm}(0) = \eta_{\pm} \).

В [1] в § 1 была изучена асимптотика \(P(\eta_-(x) > n) \) и \(P(\eta_+(x) = n) \) в случае \(x = 0 \) и отрицательного сноса, когда выполнено условие

\[
A_- = \left\{ D_+ = \sum \frac{P(S_k > 0)}{k} < \infty, \quad D_- = \sum \frac{P(S_k \leq 0)}{k} = \infty \right\}.
\]

При этом были рассмотрены следующие три класса распределений \(\xi \):

- \(\mathcal{R} \) — класс регулярных распределений, когда \(P(\xi > x) = V(x) \), где

\[
V(x) = x^{-\alpha} L(x), \quad \alpha > 1,
\]

(1)

\(L(x) \) — медленно меняющаяся функция (ММФ);

- \(\mathcal{S} \) — класс семиэкспоненциальных распределений

\[
P(\xi > x) = V(x) = e^{-l(x)}, \quad l(x) = x^\alpha L(x), \quad \alpha \in (0, 1),
\]

(2)

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований, гранты №№ 02-01-00902, 00-15-96178, и INTAS, проект № 00-265.
где $L - ММФ$ такая, что при $\Delta = o(x)$, $x \to \infty$ и любом $\varepsilon > 0$

$$l(x + \Delta) - l(x) \sim \frac{\alpha \Delta l(x)}{x}, \quad \text{если} \quad \frac{\alpha \Delta l(x)}{x} > \varepsilon,$$

$$l(x + \Delta) - l(x) \to 0, \quad \text{если} \quad \frac{\alpha \Delta l(x)}{x} \to 0; \quad (3)$$

$С$- альтернативный к $Ш$ и $Ф$ класс распределений, убывающих экспоненциально быстро, т.е. распределений, для которых выполнено условие Крамера:

$$\mu =: \sup \{\lambda : \varphi(\lambda) < \infty\} > 0, \quad \text{где} \quad \varphi(\lambda) =: Ee^{\lambda \xi}.$$

Перейдем теперь к рассмотрению случаев, когда $x \geq 0$ фиксировано и когда $x \to \infty$.

2. Случай, когда $x \geq 0$ фиксировано

2.1. Случай $A_0 = \{D_+ = \infty, D_- = \infty\}$. Отметим прежде всего, что здесь имеет место следующий аналог теоремы 1.

Теорема 7. При выполнении A_0

$$1 - E\eta_- = 1 - \frac{\eta_-}{1 - z} = \exp \left\{ \sum_{k=1}^{\infty} \frac{z^k}{k} P(S_k > 0) \right\} = \frac{1}{1 - E\eta_+},$$

$E\eta_\pm = \infty$, распределение η_- однозначно определяется распределением η_+ и наоборот.

Доказательство теоремы очевидным образом следует из (18), (19) в [1] и того, что $P(\eta_+ < \infty) = 1.$

Далее имеет место следующее утверждение. Обозначим

$$\Delta_n = P(S_n \leq 0) - \gamma, \quad G(z) = \exp \left\{ - \sum_{k=1}^{\infty} \frac{z^n \Delta_n}{n} \right\}.$$

Теорема 8. В случае A_0

1)

$$P(\eta_- > n) \sim \frac{n^{-\gamma} L(n)}{\Gamma(1 - \gamma)}, \quad \gamma \in (0, 1), \quad (4)$$

при $n \to \infty$, где $L - ММФ$, тогда и только тогда, когда

$$n^{-1} \sum_{k=1}^{n} P(S_k \leq 0) \to \gamma; \quad (5)$$

2) при выполнении (4) или (5) с необходимостью $L(n) \sim G(1 - 1/n),$$

$$\frac{P(\eta_-(x) > n)}{P(\eta_- > n)} \to r_-(x)$$

при $n \to \infty$ и любом фиксированном $x \geq 0$, где функция $r_-(x)$ найдена в явном виде;

3) если $E\xi = 0, E\xi^2 < \infty$, то $\gamma = 1/2$ и

$$\sum \frac{|\Delta_n|}{n} < \infty. \quad (6)$$

Это означает, что $L(n)$ в (4) можно заменить на $G(1), 0 < G(1) < \infty.$
Доказательство теоремы 8 см. в [2, с. 381, 382] (там же см. подробную библиографию). Очевидно, что симметричное к (4) утверждение справедливо для \(\eta_+, \eta_+(x) \) (с заменой \(\gamma \) и \(\Delta_n \) соответственно на \(1 - \gamma \) и \(-\Delta_n \)):

\[
P(\eta_+ > n) \sim \frac{n^{\gamma-1}L^{-1}(n)}{\Gamma(\gamma)}.
\]

Если \(E\xi^2 = \infty \) (если \(E\xi \) существует, то \(E\xi = 0 \)), то при выполнении известных условий на регулярность хвостов распределения \(\xi \) выполняется

\[
P(S_n \leq 0) \to F_{\alpha, \theta}(0) \equiv \gamma,
\]

где \(F_{\alpha, \theta} \) — функция распределения устойчивого закона с параметрами \(\alpha \in (0, 2], \theta \in [-1, 1] \).

Для симметричных \(\xi \) выполняется \(\gamma = 1/2 \),

\[
P(S_n \leq 0) - \frac{1}{2} = \frac{1}{2}P(S_n = 0) < \frac{c}{\sqrt{n}},
\]

так что ряд (6) сходится, \(G(z) = \exp\{-\frac{1}{2} \sum z^nP(S_n = 0)/n\} \).

Из сказанного видно, что в отличие от случая \(A_- \), здесь влияние хвостов распределения \(\xi \) на асимптотику (2) в [1] менее значимо.

Существует обширная литература о скорости сходимости \(F^{(n)}(t) = P(S_n/\sigma_n \leq t) \) при соответствующей нормировке \(\sigma_n \) к \(F_{\alpha, \theta}(t) \). В ней можно найти, в частности, условия, достаточные для сходимости ряда (6) в случае \(E\xi^2 = \infty \). Мы укажем здесь в качестве иллюстрации лишь один из известных нам результатов.

Пусть \(n_r = \int|x^r(P(dx) - dF_{\alpha, \theta}(x)| < \infty \) при \(r > \alpha \) и \(\int x(P(dx) - dF_{\alpha, \theta}(x)) = 0 \) в случае \(\alpha \geq 1 \). Тогда

\[
\sup_t|F^{(n)}(t) - F_{\alpha, \theta}(t)| \leq c_r n^{1-r}/\alpha
\]

(см. [3], [4]).

Очевидно, что в этом случае сходимость (6) будет иметь место.

Получим теперь одно уточнение теоремы 8, касающееся локальных теорем для \(\eta_- \). В дальнейшем соотношение \(g_n \sim c f_n \) при \(c = 0 \) мы будем понимать как \(g_n = o(f_n) \).

Теорема 9. 1) Пусть выполнено \(A_0 \) и

\[
\Delta_n \sim cn^{-\gamma}, \quad 0 \leq c < \infty, \quad \gamma > 0,
\]

при \(n \to \infty \). Тогда

\[
P(\eta_- = n) \sim \frac{\gamma n^{\gamma-1}}{\Gamma(1 - \gamma)} G(1), \quad 0 < G(1) < \infty.
\]

2) Если \(E\xi = 0, E|\xi|^3 < \infty \) и распределение \(\xi \) либо решетчато, либо

\[
\lim \sup |\varphi(it)| < 1,
\]

при \(|t| \to \infty \) то \(\gamma = 1/2 \) и выполнено (7), (8).

Аналогичные соотношения справедливы для \(P(\eta_+ = n) \).
Доказательство. В силу (18) в [1]

\[E_z \eta^{-} = 1 - \exp \left\{ -\gamma \sum_{k=1}^{\infty} \frac{z^k}{k} - \sum_{k=1}^{\infty} \frac{z^k \Delta_k}{k} \right\} = 1 - (1 - z) \gamma G(z). \] (9)

Асимптотика коэффициентов \(a_k \) разложения функции

\[a(z) = -(1 - z)^{\gamma} = \sum_{k=0}^{\infty} a_k z^k \]

хорошо известна:

\[a_n \sim \frac{\gamma^{n-1-\gamma}}{\Gamma(1 - \gamma)}. \] (10)

Для выяснения асимптотики коэффициентов \(g_k \) разложения

\[G(z) = \sum_{k=0}^{\infty} g_k z^k \]

нам понадобится вспомогательное утверждение.

Пусть \(d_n \sim c_n^{-\alpha}, \; \alpha > 1, \; 0 < c < \infty, \)

\[d(z) = \sum_{k=0}^{\infty} d_k z^k, \quad \hat{d}_n = |d_n|, \quad \hat{d}(z) = \sum_{k=0}^{\infty} \hat{d}_k z^k. \]

Пусть далее \(\mathcal{A}(\lambda) \) аналитическая функция в области \(|\lambda| \leq \hat{d}(1), \) так что

\[\mathcal{A}(\lambda) = \sum_{k=0}^{\infty} A_k \lambda^k, \quad |A_k| \leq c_1 (\hat{d}(1)(1 + \varepsilon))^{-k} \] (11)

при некоторых \(\varepsilon > 0, \; c_1 < \infty. \) Так как ряд \(d(z) \) абсолютно сходится, по теореме Винера–Леви функция \(\mathcal{A}(d(z)) \) также представима в виде абсолютно сходящегося ряда:

\[\mathcal{A}(d(z)) = \sum_{k=0}^{\infty} g_k z^k. \]

Лемма 1. При выполнении названных выше условий

\[g_n \sim \mathcal{A}'(d(1)) d_n. \]
Это утверждение переносит известные результаты об асимптотике субэкспоненциальных хвостов (см. [5]) на локальные асимптотические свойства регулярных знакопеременных последовательностей. Доказательство леммы см. в [6].

Воспользуемся леммой 1 при $d_n = -\Delta_n / n$, $\mathcal{A}(\lambda) = e^\lambda$. Тогда $G(z) = \mathcal{A}(d(z))$ и (7) будет означать выполнение условий леммы при $\alpha = 1 + \gamma$. Из (9), (10) получаем

$$
P(\eta_- = n) = \sum_{k=0}^{n} a_k g_{n-k} = \sum_{k \leq n/2} + \sum_{k > n/2},
$$

где

$$
\sum_{k \leq n/2} = g_n a(1) + o(g_n) = o(g_n), \quad \sum_{k > n/2} = a_n G(1) + o(a_n).
$$

Это доказывает (8).

Второе утверждение теоремы следует из того, что в условиях п. 2 теоремы

$$
\Delta_n = P(S_n \leq 0) - \frac{1}{2} = \frac{cE\xi^3}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)
$$

(см., например, [7]) и, стало быть, выполнено (7) при $\gamma = 1/2$.

Теорема доказана.

2.2. Фиксированный уровень $x > 0$. Асимптотика распределений $\eta_\pm(x)$ при $x > 0$ отличается от соответствующей асимптотики для η_\pm множителем, зависящим лишь от x. Именно, в [2] и [8]–[11] установлено, что в условиях теорем 2 (для класса \mathcal{R}), 5, 6 в [1] и теоремы 8 справедлива

Теорема 10. В случаях A_-, A_0 при $n \to \infty$ и любом фиксированном $x \geq 0$

$$
P(\eta_-(x) > n) P(\eta_- > n) \to r_-(x), \quad P(n < \eta_+(x) < \infty) P(n < \eta_+ < \infty) \to r_+(x),
$$

где функции $r_\pm(x)$ найдены в явном виде.

Вид функций $r_\pm(x)$ оказывается весьма сложным. В следующем разделе будет найдена асимптотика этих функций при $x \to \infty$.

Для ограниченных репетициональных ξ в [12] получены асимптотические разложения для $P(\eta_\pm(x) = n)$.

3. Растущий уровень x

В этом разделе нам будет удобнее изменить направление сносов в том случае, когда он не ноль, так что теперь основным случаем будет $A_+ = \{a = E\xi > 0\}$, а основным объектом изучения — время $\eta_+(x)$ первого прохождения уровня $x \to \infty$. В связи с этим класс \mathcal{R} будет описываться теперь с помощью регулярных левых хвостов

$$
\{W(t) = P(\xi < -t) = t^{-\beta} L_W(t),
$$

(12)
где $\beta > 1, L_W - \text{ММФ} \text{ при } t \to \infty$.

Мы будем рассматривать в этом разделе лишь классы хвостов \mathcal{R} и \mathcal{C}, а также распределения из класса \mathcal{M}_s, для которых $E|\xi|^s < \infty$. Ясно, что пересечение классов \mathcal{M}_s и \mathcal{R} не пусто. Так как $\{\eta_+(x) > n\} = \{S_n \leq x\}$, нашу задачу можно рассматривать так же, как задачу о “малых уклонениях” максимума S_n.

3.1. Класс хвостов \mathcal{C}. В этом случае асимптотика $P(\eta_+(x) > n) = P(S_n \leq x)$ изучена достаточно полно в [13], [14] при любом значении $a = E\xi$. Метод исследования, использованный в [13], [14], состоит в отыскании двойных преобразований над $P(\eta_+(x) > n)$ (по x и по n) в терминах решений уравнений типа Вибера–Хопфа (или, что то же – в терминах компонент факторизации; в [13] эти компоненты находятся в явном виде) и в последующем асимптотическом обращении этих преобразований. Сравнительно недавно выяснилось, что такой подход не является единственно возможным в рассматриваемых задачах. В [15], [16] прямыми вероятностными методами было установлено, что асимптотики вероятностей больших (и малых) уклонений S_n в ряде случаев могут быть явным образом найдены через соответствующую асимптотику для S_n. В частности, если $x/n < a = E\xi$, $x/n \in (\alpha_1, \alpha_2)$, где α_i определяются аналитическими свойствами $\varphi(\lambda)$, то

$$P(\eta_+(x) > n) \sim c\left(\frac{x}{n}\right)P(S_n \leq x),$$

где $c(u)$ найдена в явном виде. Более подробно на случае \mathcal{C} мы здесь останавливаться не будем.

3.2. Класс распределений \mathcal{M}_s. Для распределений из класса \mathcal{M}_s без привлечения свойств регулярности (12) удается изучить асимптотику $P(\eta_+(x) > n)$ лишь в случае $A_0 = \{a = 0\}$.

Везде в дальнейшем будет предполагаться, что в решетчатом случае уровень $x \to \infty$ принадлежит соответствующей решете.

Теорема 11. Пусть выполнено \mathcal{M}_3, $a = 0$, $E\xi^2 = 1$, $x \to \infty$, $x = o(\sqrt{n})$. Тогда

$$P(\eta_+(x) > n) \sim \frac{x\sqrt{2}}{\sqrt{\pi n}}.$$

Это утверждение немедленно следует из оценки скорости сходимости

$$\sup_x \left| P(S_n \leq x) - 2 \left[\Phi\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{2} \right] \right| < \frac{c}{\sqrt{n}}, \quad c < \infty,$$

в [17] (см. также [18], [19]), справедливой при $E|\xi|^3 < \infty$. Здесь Φ – функция распределения стандартного нормального закона. Так как $\Phi(u) - 1/2 \sim u/2\pi$ при $u \to 0$, мы получаем (14).

Если распределение ξ решетчато или $\lim \sup_{t \to \infty} \varphi(i\lambda) < 1$, то при выполнении \mathcal{M}_s, $s > 3$, можно изучать также асимптотическое разложение для $P(S_n \leq x)$ при $x \to \infty$ (см. [18], [14], [20], [21]) и можно получить аналогичные разложения и для

$$P(\eta_+(x) = n) \sim \frac{x}{\sqrt{2\pi n^{3/2}}}$$

2*
(локальные предельные теоремы для \(\eta_+ (x) \)).

Случай \(x \to \infty, a > 0, \mathcal{M}_a \), насколько нам известно, остается не изученным. Изучению этого случая в классе \(\mathcal{R} \) и посвящен следующий раздел.

3.3. Асимптотика \(P(\eta_+(x) > n) \) при выполнении условий \(x \to \infty, a > 0, \mathcal{R} \).

Наряду с названными в заголовке этого раздела условиями нам может понадобиться в случае \(\beta \in (1, 2) \) (см. (12)) дополнительное условие

\[
P(\xi > t) \leq V(t),
\]

где \(V \) имеет вид \(V(t) = t^{-\alpha} L(t), \alpha > 1, L - \text{ММФ} \). Обозначим

\[
z = an - x.
\]

Теорема 12. Пусть \(a > 0, x \to \infty, x < an \) и выполнено \(\mathcal{R} \). Тогда

1) Если \(\mathbb{E} \xi^2 < \infty \) (\(\beta > 2 \)) и \(z \gg \sqrt{n \ln n} \), то

\[
P(\eta_+(x) > n) \sim \frac{x}{a} W(z);
\]

2) соотношение (17) сохраняется, если \(\beta \in (1, 2) \), выполнено (16), \(n \) и \(z \) таковы, что

\[
nW(z) \to 0, \quad nV\left(\frac{z}{\ln z}\right) \to 0.
\]

Смысл утверждения (17) весьма прост: основной вклад в вероятность \(P(\overline{S}_n \leq x) \) вносят траектории, у которых на одном из первых \(x/a \) скачков (до пересечения границы \(x \) “линейной сноса” \(a(k) = \mathbb{E} S_k = ak \)) произошел отрицательный выброс на величину \(\leq x - an \).

Из теоремы следует

\[
P(\overline{S}_n \leq x) \sim \frac{x}{an} P(S_n \leq x),
\]

так что соотношение (13) здесь сохраняется, но вместо весьма сложного множителя \(c(\alpha) \) в (13), здесь стоит значительно более простая функция \(c(\alpha) = \alpha / a \), при этом случай \(\alpha \to 0 \) не исключается.

Доказательство теоремы 12 разобьем на три этапа.

1. Оценка снизу. Обозначим

\[
G_n = \{ \overline{S}_n \leq x \}, \quad B_j = \{ \xi_j < -z(1 + \varepsilon) \}, \quad v = \frac{x}{a} (1 - \varepsilon),
\]

где \(\varepsilon > 0 \) — фиксированное малое число. Тогда, считая для простоты \(v \) целочисленным, будем иметь

\[
P(G_n) \geq P \left(G_n \cup \bigcup_{j=1}^{v} B_j \right) = \sum_{j=1}^{v} P(G_n B_j) + O((xW(z))^2).
\]
Очевидно, что при \(j \leq v \) в силу закона больших чисел \(P(G_n/B_j) \to 1 \) при \(x \to \infty \). Так как \(xW(z) \to 0 \), то

\[
P(G_n) \geq \sum_{j=1}^{v} P(B_j)(1 + o(1)) + O((xW(z))^2) \sim \frac{x}{a}(1 - \varepsilon)W(z(1 + \varepsilon)).
\]

В силу произвольности \(\varepsilon > 0 \) находим окончательно

\[
P(G_n) \geq \frac{x}{a}W(z)(1 + o(1)). \tag{19}
\]

2. Оценка \(P(G_n) \) сверху для срезанных слагаемых. Обозначим \(C_j = \{ \xi_j > -z/r \} , r > 1, C = \bigcap_{j=1}^{n} C_j \). Тогда

\[
P(G_n) = P(G_n C) + P(G_n \overline{C}), \tag{20}
\]

где \(\overline{C} \) есть дополнение к \(C \),

\[
P(G_n \overline{C}) \leq \sum_{j=1}^{n} P(G_n \overline{C}_j), \quad P(G_n C) \leq P(S_n - an \leq -z; C). \tag{21}
\]

Лемма 2. Если \(E\xi^2 < \infty, (\beta > 2) \), у \(x \gg \sqrt{n \ln n} \), то

\[
P(G_n C) \leq (nW(z))^{r+o(1)}.
\]

Если \(\beta \in (1, 2) \), выполнено (16), (18), то

\[
P(G_n C) \leq c(nW(z))^r.
\]

Утверждение леммы вытекает из теоремы 4.1 (следствие 4.1) и теоремы 3.1 в [22]. Если выбрать \(r > \beta/(1 - \beta) \), то, очевидно

\[(nW(z))^r = o(xW(z)), \quad P(G_n C) = o(xW(z)). \tag{22} \]

3. Оценка сверху суммы (21). Имеем

\[
P(G_n \overline{C}_j) = P\left(\overline{S}_{j-1} \leq x, \xi_j < -\frac{z}{r}, S_{j-1} + \xi_j + \overline{S}_{n-j} \leq x \right),
\]

где \(\overline{S}_{n-j} \) имеют распределение \(\overline{S}_{n-j} \), но не зависят от \(\xi_1, \ldots, \xi_j \). Так как \(\xi_j \) не зависит от \(\xi_1, \ldots, \xi_{j-1} \) и \(\overline{S}_{n-j} \), то

\[
P(G_n \overline{C}_j) \leq E\left[W(-x + \overline{S}_{n-j} + S_{j-1}) ; \overline{S}_{n-j} + S_{j-1} > x + \frac{z}{r} \right]
\]

\[
\leq E\left[\max\left(\frac{z}{r}, -x + S_{n-1}\right) \right] = E\left[\max\left(\frac{z}{r}, z + S^0_{n-1}\right) \right]
\]

\[
\sim W(z)E\left[\max\left(\frac{1}{r}, 1 + \frac{S^0_n}{z}\right) \right]^{-\beta},
\]
где $S_n^n = S_n - an$. Так как $S_n^n / z \to 0$ при выполнении условий $z \gg \sqrt{n \ln n}$ или (18), мы получаем отсюда

$$P(G_n \bar{C}_j) \lesssim W(z)(1 + o(1)).$$

Кроме того,

$$P(G_n \bar{C}_j) \lesssim W\left(\frac{z}{r}\right)P(S_{j-1} \leq x) = W\left(\frac{z}{r}\right)P(\eta(x) \geq j).$$

Почему

$$\sum_{j=1}^{n} P(G_n \bar{C}_j) \lesssim \frac{x}{a}(1 + \varepsilon)W(z) + W\left(\frac{z}{r}\right)\sum_{j>\frac{x}{a}(1+\varepsilon)} P(\eta(x) \geq j).$$

(23)

Здесь $W\left(\frac{z}{r}\right) \lessapprox cW(z)$ и в силу усиленного закона больших чисел и теоремы восстановления $\mathbb{E}\eta_+(x) = \sum P(\eta_+(x) > j) \sim x/a$ находим, что второе слагаемое в правой части (23) есть $o(x)W(z)$. Отсюда следует, что

$$\sum_{j=1}^{n} P(G_n \bar{C}_j) \lesssim \frac{x}{a}W(z)(1 + o(1)).$$

Сопоставляя это неравенство с (20)–(22), мы получим такую же оценку для $P(G_n)$. Это вместе с оценкой снизу (19) доказывает теорему.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Институт математики им. С. Л. Соболева СО РАН
E-mail: borovkov@math.nsc.ru

Поступило 17.05.2002
Исправленный вариант 01.04.2003