Н. П. Долбилин, М. А. Штанько, М. И. Штогрин, О неизгибаемости полиэдральных сфер с четноугольными гранями, \textit{УМН}, 1996, том 51, выпуск 3(309), 197–198

DOI: https://doi.org/10.4213/rm982
В этой заметке мы продолжаем изучение вопроса о нейзигабаемости выпуклых многоугольников в \(\mathbb{E}^3 \), начатое в работах [2]-[4]. Метод графа изгиба, описанный в этих работах, находит здесь дальнейшее развитие. С основными понятиями, результатами и проблемами теории изгиба поверхности можно ознакомиться в сборнике [1].

Рассмотрим поливершинную сферу \(S^2 \), состоящую из эквивалентных многоугольников, и ее вложение \(f: S^2 \rightarrow \mathbb{E}^3 \), при котором каждая грань сферы \(S^2 \) отображается иометрично в плоский многоугольник, расположенный в пространстве.

Допустим, что изогнутая сфера \(f(S^2) \) допускает непрерывное изгиба \(\varphi \). В процессе которого каждая грань остается плоской. В процессе изгиба \(\varphi \) хотя бы один двуугранный угол, т.е. угол между плоскостями двух смежных граней, изменяется. Будем называть такое ребро изменяющимся при \(\varphi \), двумя углами. Рассмотрим изгиба \(\varphi \) и будем предполагать его настолько малым, что изогнутая сфера при изгиба \(\varphi \) остается по-прежнему иометричной. Множество всех отложенных ребер образует граф \(\Gamma \). Ребра графа – это отложенные ребра сферы \(f(S^2) \), а вершины графа – это вершины отложенных ребер и только они. Напомним свойства графа отложенных ребер.

1. Пусть изгиба \(\varphi \) существует, тогда граф \(\Gamma \) не пуст.

2. Граф \(\Gamma \) разбивает сферу \(f(S^2) \) на несколько компонент связности. Каждое отложенное ребро разделяет две различные компоненты, т.е. является границей двум компонентам.

3. В каждой вершине графа должно встречаться не менее двух ребер.

4. Если в вершине графа \(\Gamma \) сходится только одно его ребро, то оно лежит на прямой.

По этой схеме, как это делалось в [3], [4], перейдем от графа отложенных ребер к другому, так называемому графу изгиба \(\Gamma \). Вершины графа изгиба \(\Gamma \) являются лишь те вершины графа \(\Gamma \), в которых сходится не менее 4 отложенных ребер. Рассмотрим произвольное ребро \(e \) из графа \(\Gamma \) и выделим те отложенные ребра, которые можно соединить с ребром \(e \) путем, проходящим через вершину графа \(\Gamma \) степени 2. В силу ограниченности сферы \(f(S^2) \) и свойства \(\Gamma \) такие ребра образуют прямолинейный отрезок, который является по соглашению ребром графа изгиба \(\Gamma \).

1. Все ребра графа \(\Gamma \) суть прямолинейные отрезки, составляющие из одного или нескольких ребер, входящих в граф \(\Gamma \).

2. Ничего два ребра графа \(\Gamma \) не имеют общих концов.

Это вытекает из того, что \(f(S^2) \) есть вложение в \(\mathbb{E}^3 \). Таким образом, в графе изгиба нет двугранных циклов.

3. В каждой вершине графа \(\Gamma \) сходится не менее 4 ребер.

4. Граф \(\Gamma \) разбивает сферу на области, среди которых по крайней мере один треугольник (над треугольниками понимается область, граница которой состоит из треуг и только трех ребер графа \(\Gamma \)).

Точно так же, как и в [2]-[4], граф изгиба \(\Gamma \) разбивает многогранную поверхность \(f(S^2) \) на связные области, среди которых есть по крайней мере восемь таких, что граница каждой из них есть треугольник в графе \(\Gamma \) ("условие 8 треугольников").

Теорема 1. Пусть поливершинная сфера \(S^2 \) содержит лишь четверосторонние грани и все ее вершины – строго положительной кривизны. Пусть \(f \) – вложение сферы \(S^2 \) в \(\mathbb{E}^3 \), которое локально иометрично и линейно на каждой грани. Тогда сфера \(f(S^2) \) не допускает изгиба, при котором все грани останутся плоскими.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 96-01-00 166) и Немецкого научно-исследовательского общества (DFG).
ДОКАЗАТЕЛЬСТВО теоремы проведем от противного. Пусть \(f(S^2) \) допускает непрерывное изгибание \(\varphi \) и пусть \(\Gamma _\varphi \) – соответствующий граф изгибаия.

В силу строгой положительности кривизны вершина графа изгибаия \(\Gamma _\varphi \) соизмерим с графом отмеченных рёбер \(\Gamma \). Действительно, так как каждая вершина в полиэдре \(S^2 \) имеет строго положительную кривизну, то в ней не может соединиться два отмеченных рёбра (свойство Г).

Так как в графе \(\Gamma \) нет дождевых вершин, то каждое ребро графа \(\Gamma \) является ребром графа \(\Gamma _\varphi \) и обратно. Таким образом, граф \(\Gamma \) соизмерим с \(\Gamma _\varphi \). В графе \(\Gamma = \Gamma _\varphi \) существуют, по крайней мере, веселые треугольники. Каждый треугольник составлен из трёх и только трёх рёбер графа \(\Gamma \).

Таким образом, вершина графа \(\Gamma _\varphi \) является односторонней цепью на сфере \(f(S^2) \) и, следовательно, гомологическим 0-помодулем. Заметим, однако, что на ортогональной поверхности, с четко нулевыми граничными условием, рёберной невязкой, нет таковых графов \(\Gamma _\varphi \), что их можно заменить на графы, в которых все грани остаются плоскими.

СЛЕДСТВИЕ. Каждое невязкое вложение поверхности в двухмерное многоугольник в квадрату рамке \(S^2 \) с четко нулевыми граничными условиями не является.

Теорема 1 допускает следующее утверждение.

ПРЕДЛОЖЕНИЕ 1. Пусть полидипидная сфера \(S^2 \) содержит не более семи некотопоголых граней и все её вершины – строго положительных кривизны. Пусть \(f \) – вложение сферы \(S^2 \) в \(E^2 \), которое локально изометрично и линейно на каждой грани. Тогда сфера \(f(S^2) \) не допускает изгибаия, при котором все грани остаются плоскими.

ДОКАЗАТЕЛЬСТВО. Допустим, что данная поверхность изгиба. Среди областей, на которые граф \(\Gamma _\varphi \) раскрывает поверхность, \(f(S^2) \), имеется по крайней мере веселая область, обозначим её через \(F_i \), которые ограничены трёугольниками \(\Delta_i \) (условно веселыми треугольниками). Так как все вершины на \(S^2 \) имеют строго положительную кривизну, то граф \(\Gamma = \Gamma _\varphi \) и каждая сторона треугольника \(\Delta_i \) состоит из одного и только одного ребра многогранной поверхности \(f(S^2) \).

Воспользуемся следующим фактом: если обозначим в область состоит лишь из четко граней, то граница этой области есть также четко граней. Тогда, если бы полидипидная сфера \(S^2 \) имела бы все равно нечетко граней граф, то по крайней мере одна из областей \(F_1, \ldots, F_8 \) состояла бы только из четко граней и следовательно, ограничивающий ее контур мог бы быть треугольником.

В заключение заметим, что изложенное здесь, результаты верны также и для значительно более широкого класса отображений \(f \) полидипидной сферы \(S^2 \). А именно, по-прежнему предполагая отображение \(f \) локально изометричным и линейным на каждой грани, будем требовать от отображения \(f \) лишь то, что оно является по-прежнему четко гранями полидипидной сферы \(S^2 \).

Список литературы

Математический институт

Привет редакционной

им. В. А. Стеклова РАН

18.04.1996