О ЛЕНТОЧНОЙ РАЗМЕРНОСТИ КОЛЪЦА
ФОРМАЛЬНЫХ СТЕПЕННЫХ РЯДОВ
В. Н. Силав

В 1991 г. Гудерман, Мендел и Моккази доказали [1], что любая алгебра А с 1 над полем F может быть вложена в алгебру B(F) всех (ω × ω)-матриц над полем F, в каждую из которых лежит столбец, который содержит произведение конечного числа элементов. В [2] О'Мэри и Хэйф поясняют краткое роста, определенное для любой матрицы из B(F). Используя результат Гудермана, Мендела и Моккази, описанного выше, они получили функцию ленточной размерности. Такую функцию имеет вложение, либо матрицы B(F), что из исследований и в дальнейшем.

Напоминаем основные определения:

Для любого элемента x из алгебры B(F) функции g(n), определенные на множестве натуральных чисел, задается кратким ростом x матрицы x, если для каждого значения n ∈ N x(n, i) = x(n, i) = 0 для всех n гоморфных t таких, что i > n + g(n). Говорят, что матрица x ∈ B(F) имеет порядок роста g(n) если он имеет g(n) - рост, где g : N → R+, если существует постоянная α > 0, что функции g(n) является кратким ростом для матрицы x. Если A - вектор в B(F) и каждый элемент из A имеет O(α(n)) рост, то говорят, что алгебра A имеет O(α(n)) - рост. Матрицы с кратким ростом обозначаются cn, где α - произвольное фиксируемое значение, α ∈ [0, 1], обозначающую G(α(n)). Введем также обозначение Wα(c) = {x ∈ B(F) | x имеет краткий рост cn}, Wα(c) является подпространством B(F).

Определение. Ленточной размерностью (bw, dim) алгебры A называется функция inf(α ∈ R, α > 0 | A вкладывается в G(α(n))).

Функция ленточной размерности принадлежит значения в промежутке [0, 1], причем все значения из [0, 1], на множество алгебры с 1 над полем F, как показано в [2].

Теорема 1. Для любого поля F bw, dim F[x] = 0.

Доказательство. Нетрудно показать, что F[x] ⊂ G(r) для любого r > 0. Так что так как r ∈ [0, 1], то 0 ≤ inf(r ∈ R, r ≤ 0 | F[x] вкладывается в G(α(n))) ≤ 0, откуда bw, dim F[x] = 0, что и требуется доказать.

Лемма 1. Пусть |F| = L < ∞, A ∈ B(F). {A, A², . . . , A^n, . . . } ⊂ W0(0). Тогда найдется многочлен P(x) не 0, deg P(x) ≤ L(2k + 2)(2k + 1) так, что P(A) = 0.

Леммo. Рассмотрим A как оператор на счетнопорядковом пространстве V с фиксированным базисом (e_i)_{i=1}^{∞}. Тогда для любого i иррационального (e_i, A e_i, A² e_i, . . .) ⊂ (e_{i+k}, . . . , e_{i+k+1}). И с этого следует, что найдется многочлен P_i(x) не 0, deg P_i(x) ≤ 2k + 1, такой, что P_i(A) e_i = 0. Количество различных натуральных многочленов степени не больше 2k + 1 над полем, состоящих из L элементов, не превосходит (2k + 2)L. Ввиду произведения, получим многочлен, обладающий несколькими свойствами, степени не больше (2k + 2)(2k + 1)L. Лемма доказана.

Теорема 2. F[[x]] ⊆ G(0) = {x ∈ B(F) | x имеет краткий рост C = C(x, зависимости от x). Другими словами, не существует вложения F[[x]] в всюто DFM счетнопорядковых матриц с конечным числом ненулевых над. и поддиагоналей.

Лемма. A) Предположим, что существует такое вложение ψ : F[[x]] → G(0). Обозначим через A матрицу ψ(A). Матрица из G(0) можно рассматривать как оператор в счетномерорном пространстве V, если под множество Q базиса. Тогда для любого v ≠ 0 рассмотрим ряд векторов v, A v, A² v, A³ v, Для него есть две возможности: a) v, A v, A² v, A³ v, . . . и линейно независима система векторов; b) v, A v, A² v, и линейно зависимая система векторов. Тогда существует многочлен P(x) не 0 такой, что P(A) v = 0. Выберем многочлен напрямую степень с данным старшим коэффициентом. Он существует, идентичен для
каждого v; обозначим его $P_n(x)$. Далее, $P_n(x) = x^n + \cdots + a_{k-1}x^{k-1} + a_k$,
где $a_k \neq 0$, $P_n(x)$ — обратим в $F[[x]]$. Тогда имеем $\varphi(P_n(x)) = \varphi(x^n) = 0$.
Отсюда также как и степень многочлена выбираю наибольшее, то $P_n(x) = x^n$,
$A^n v = 0$, то $\{v, A^1 v, \ldots, A^{n-1} v\}$ — линейно независимая система. Таким образом, для любого
в V независимы для случая: а) $\{v, A^1 v, \ldots\}$ — линейно независимая система; б) $A^n v = 0$,
$\{v, A^1 v, \ldots, A^{n-1} v\}$ — линейно независимая система.
Б) Введем обозначение $V_0 = \{v \in V | \exists n \in N A^n v = 0\}$. Тогда $A^0 v = 0$ — подпространство V,
$A^0 v \subset V_0$.

Лемма 2. Для любого $f(x) = a_0 + a_1 x + \cdots + a_n x^n + \cdots \in F[[x]]$ оператор $f(A) = a_0 +
\cdots + a_n A^n + \cdots$ определен корректно на V_0 и $\varphi(f) = f(A)$ на V_0.

Доказательство. Для любого $v \in V_0$ $f(A)v$ определено корректно и $\varphi(f)v = f(A)v$.

Таким образом, получаем, что $\varphi(f) = f(A) v \in V_0$.

Лемма 3. Пусть $A = \varphi(x)$, тогда $\{A, A^2, \ldots, A^n, \ldots\} \not\subset W_k(0)$ ни для какого фиксированного k.

Доказательство. Выберем в $V = V_0$ базу $\{e_i\}_{i=1}^\infty$. Тогда для любого i имеет место
$\{e_0, e_1, A e_1, A^2 e_1, \ldots\} \subset L$, где $L = (e_{i-k}, e_i, \ldots, e_{i+k})$. Отсюда следует, что $A^k e_i = 0$.

Список литературы