Ю. С. Колесов, Природа буферности, *Матем. заметки*, 2003, том 74, выпуск 2, 238–241

DOI: https://doi.org/10.4213/mzm260

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
10 апреля 2019 г., 21:33:18
ПРИРОДА БУФЕРНОСТИ
Ю. С. Колесов

Сформулирована теорема о неустойчивости автомодельных циклов и торов определенного типа в системе, являющейся квазинормальной формой краевой задачи для нелинейного волнового уравнения в квадрате.

Библиография: 1 название.

Если нелинейная краевая задача для некоторого волнового уравнения имеет большое число устойчивых пространственно неоднородных циклов, устроенных достаточно однотипно, то принято говорить о явлении буферности. К настоящему времени обнаружено, что при различном выборе краевых условий для волновых уравнений на отрезке данное явление типично. Однако, в плоской области, как показано в [1], где при нулевых граничных условиях рассмотрено часто встречающееся волновое уравнение, явление буферности места не имеет. Поэтому возникает вопрос о природе буферности при других граничных условиях. По ряду причин наиболее естественными представляются граничные условия Неймана.

1. Ниже рассматривается бифуркационная проблема для того же уравнения, что и в [1], но при условиях непрочищаемости на границе \(\Gamma \) некоторой ограниченной плоской области \(\Omega \):

\[
 u_{tt} - \varepsilon u_t + u^2 u_t + \delta^2 u = \Delta u, \quad \frac{\partial u}{\partial v}_{|\Gamma} = 0. \tag{1}
\]

Здесь \(\Delta \) – оператор Лапласа, \(\varepsilon \) – малый положительный параметр, \(\delta > 0 \) – постоянная, \(\nu \) – направление внешней нормали в произвольной точке \(\Gamma \). Фазовым пространством считаем произведение соболевских пространств \(W_2^2 \times W_2^1 \).

Ограничившись описанием полученных результатов для трех случаев:

- \(\Omega \) – единичный квадрат, т.е. \(0 \leq x, y \leq 1 \);
- \(\Omega \) – прямоугольник, т.е. \(0 \leq x \leq l_1, \ 0 \leq y \leq l_2, \ l_1 \neq l_2 \);
- \(\Omega \) – треугольник, задаваемый неравенствами \(x, y \geq 0, \ x + y \leq 1 \).

Начнем со второго случая, для которого явление буферности имеет место. В этом случае устойчивые циклы одномерны в том смысле, что каждый из них зависит только от одной пространственной переменной.

Наиболее неожиданным оказалось, что в первом случае буферность связана с наличием большого числа в определенном смысле симметричных пар мод.
Эти два примера подсказывают, что, вероятно, явление буферности, если оно в принципе возможно, в отмеченном выше смысле связано с одномерностью бифурцирующих циклов.

В третьем случае оператор Лапласа не имеет нетривиальных собственных функций, зависящих от одной пространственной переменной, что объясняет полученный результат: неустойчивы все пространственно неоднородные циклы и торы, бифуркающие из нулевого состояния равновесия.

Во втором и третьем пунктах мы кратко описываем доказательство одного результата, связанного с первым случаем.

2. Пусть Ω - квадрат. Тогда если в (1) отбросить нелинейность и положить $\varepsilon = 0$, то решения получившейся линейной краевой задачи описываются с частотным набором:

$$
\omega_{00} = \delta, \quad \omega_{kn} = \pi \sqrt{\delta^2 + k^2 + n^2}, \quad k + n > 0, \quad k, n = 0, 1, \ldots \tag{2}
$$

Нормированные собственные функции, по которым естественным образом разлагаются в ряд Фурье решения линейной краевой задачи, соответственно равны

$$
\begin{align*}
\psi_{00} &= 1, \quad \psi_{kn} = 2 \cos k\pi x \cos n\pi y, \quad k, n = 1, 2, \ldots, \\
\psi_{k0} &= \sqrt{2} \cos k\pi x, \quad \psi_{0n} = \sqrt{2} \cos n\pi y.
\end{align*} \tag{3}
$$

В соответствии с идеологией метода квазинормальных форм решения краевой задачи (1) представляем в виде

$$
u = \varepsilon^{1/2} u_0 + \varepsilon^{3/2} u_1 + \cdots, \tag{4}
$$

где $u_0 = \sum [v_{kn}(\tau) \exp(i\omega_{kn} t) + \text{k.c.}] u_{kn}(x, y)$, $\tau = \varepsilon t$ - медленное время, к.с. - принятое сокращение для обозначения комплексно сопряженной величины, гладкая функция $u_1 = u_1(\tau, t, x, y)$ гармонична по t.

Представляя (4) в (1) и приравнивая коэффициенты при степенях $\varepsilon^{3/2}$, во времени t для переменных v_{kn} и \bar{v}_{kn} получаем систему обыкновенных дифференциальных уравнений, структура которых существенно зависит от резонансов третьего порядка частотного набора (2). С учетом специфики задачи в [1] показано, что возможны только тождественные резонансы, к которым, в частности, относится каждое из формальных равенств

$$
\omega_{kn} = 2\omega_{nk} - \omega_k, \quad k + n > 0, \quad k, n = 0, 1, \ldots \tag{5}
$$

Отметим, что для прямоугольной области они невозможны.

Из (3), (5) следует, что в квадрате квазинормальная форма краевой задачи (1) представлена следующим образом:

$$
2 \frac{dv_{kn}}{d\tau} = v_{kn} - \frac{9}{4} v_{kn} |v_{kn}|^2 - \bar{v}_{kn} v_{nk}^2 - 2 v_{kn} \sum_{p \neq k, s \neq n} |v_{ps}|^2 - 3 v_{kn} \sum_{p \neq k} |v_{pn}|^2 - 3 v_{kn} \sum_{s \neq n} |v_{ks}|^2, \quad k, n = 1, 2, \ldots \tag{6}
$$

$$
2 \frac{dv_{k0}}{d\tau} = v_{k0} - \frac{3}{2} v_{k0} |v_{k0}|^2 - \bar{v}_{k0} v_{0k}^2 - 2 v_{k0} \sum_{p \neq k} |v_{ps}|^2 - 3 v_{k0} \sum_{s \neq 0} |v_{ks}|^2, \quad k = 1, 2, \ldots \tag{7}
$$
\[2 \frac{dv_{on}}{dr} = v_{0n} - \frac{3}{2} v_{0n} |v_{0n}|^2 - \overline{v}_{0n} v_{n0}^2
- 2v_{0n} \sum_{s \neq n} |v_{ps}|^2 - 3v_{0n} \sum_{s \neq 0} |v_{sn}|^2, \quad n = 1, 2, \ldots, \quad (8) \]

\[2 \frac{dv_{00}}{dr} = v_{00} - v_{00} |v_{00}|^2 - 2 v_{00} \sum_{s = p \neq 0} |v_{ps}|^2. \quad (9) \]

Система (6)–(9) дополняется аналогичными уравнениями для \(\overline{v}_{kn}, k, n = 0, 1, \ldots \).

3. Краевая задача (1) при любом выборе области имеет пространственно однородный цикл, устойчивость которого просто обосновывается без привлечения метода квазинормальных форм.

Теорема. Среди автомодельных циклов и торов системы (6)–(9), у которых ненулевые являются только координаты с не равными одновременно нулю индексами \(k, n \leq N_0 \), орбитально экспоненциально устойчивы пространственно неоднородные циклы, связанные с \(v_{kn} \) и \(v_{nk}, k \neq n \).

Доказательство теоремы достаточно громоздко. Поэтому ограничимся важным случаем, когда некоторые \(v_{k0} \) и \(v_{0k} \) отличны от нуля, а остальные переменные системы (6)–(9) являются нулевыми. При этом условии после соответствующего сужения уравнений (7), (8) приходим к системе

\[2 \dot{r}_{k0} = \left(1 - \frac{3}{2} r_{k0}^2 - 2r_{0k}^2 - r_{0k}^2 \cos 2\alpha_{k0} \right) r_{k0}, \quad (10) \]

\[2 \dot{r}_{0k} = \left(1 - \frac{3}{2} r_{k0}^2 - 2r_{0k}^2 - r_{k0}^2 \cos 2\alpha_{k0} \right) r_{0k}, \quad (11) \]

\[2 \dot{\alpha}_{k0} = (r_{k0}^2 + r_{0k}^2) \sin 2\alpha_{k0}, \quad (12) \]

где \(v_{k0} = r_{k0} \exp(i\varphi_{k0}), v_{0k} = r_{0k} \exp(i\varphi_{0k}), \alpha_{k0} = \varphi_{k0} - \varphi_{0k} \). Из (12) следует, что \(2\alpha_{k0} \to \pi \) при \(t \to \infty \). Это обстоятельство позволяет перейти от (10), (11) к системе

\[\dot{r}_{k0} = \left(1 - \frac{3}{2} \rho_{k0} - \rho_{k0} \right) r_{k0}, \quad \dot{\rho}_{k0} = \left(1 - \frac{3}{2} \rho_{0k} - \rho_{k0} \right) \rho_{k0}, \]

где \(\rho_{k0} = r_{k0}^2, \rho_{0k} = r_{0k}^2 \), аттрактор которой — состояние равновесия \((2/5, 2/5) \).

Итак, при анализе системы (6)–(9) переменные можно считать вещественными, если изменить знак перед третьими слагаемыми в уравнениях (6)–(8). При этом удобно перейти к переменным \(\rho_{kn} = v_{kn}^2, k, n = 0, 1, \ldots \), что сводит проблему к анализу устойчивости ненулевых состояний равновесия получающейся системы. Эти замечания пре-вращают доказательство теоремы в техническое, хотя и трудоемкое упражнение.

Отметим, что аналогичное утверждение справедливо и для второго случая, если \(l_1 - l_2 = \gamma \varepsilon \), а постоянная \(\gamma \) достаточно мала.

4. Представляет интерес рассмотрение данного вопроса для сингулярно возмущенной краевой задачи

\[u_{tt} - 2\varepsilon u_t + u = 2\varepsilon \mu \Delta u + f(u, u_t), \quad \frac{\partial u}{\partial v} |_\Gamma = 0, \quad (13) \]
где параметр $\mu > 0$, а гладкая функция f имеет в нуле высший порядок малости. Обозначим через d первую ляпуновскую величину обыкновенного уравнения $\ddot{u} + u = f(u, \dot{u})$. Считаем, что $\text{Re} \ d < 0$. Если $\text{Im} \ d > 0$, однородный цикл краевой задачи (13) орбитально устойчив при любом изменении μ.

Пусть $d = -1 - i \omega^2$. Тогда квазинормальная форма краевой задачи (13) имеет вид

$$\frac{\partial \xi}{\partial t} = -i \mu \Delta \xi + \xi - (1 + i \omega^2)|\xi|^2 \xi, \quad \left. \frac{\partial \xi}{\partial \nu} \right|_\Gamma = 0. \tag{14}$$

Краевая задача для ξ получается из (14) путем применения операции комплексного соединения. Если в (14) оператор Лапласа заменить его какой-то разностной аппроксимацией, то при малых μ единственным аттрактором получающейся системы обыкновенных уравнений является многомерный тор. Поэтому квазинормальную форму теперь уже краевой задачи (14) следует строить следующим образом.

Положим в (14)

$$\xi = (1 + \mu \Phi_1(\phi) + \mu^2 \Phi_2(\phi)) \exp(i \phi), \tag{15}$$

$$\frac{\partial \phi}{\partial t} = -\omega^2 + \mu \Pi_1(\phi) + \mu^2 \Pi_2(\phi), \quad \left. \frac{\partial \phi}{\partial \nu} \right|_\Gamma = \left. \frac{\partial \Delta \phi}{\partial \nu} \right|_\Gamma = 0. \tag{16}$$

Подставляя (15), (16) в (14), заключаем, что

$$\Phi_1 = \frac{1}{2} \Delta \phi, \quad \Pi_1 = -\omega^2 \Delta \phi + \phi_x^2 + \phi_y^2, \quad \tag{17}$$

$$\Phi_2 = \frac{\omega^2}{4} \Delta^2 \phi - \frac{5}{8} (\Delta \phi)^2, \quad \Pi_2 = -\frac{\omega^4 + 1}{2} \Delta^2 \phi + \omega^2 (\Delta \phi)^2. \tag{18}$$

Из (17), (18) следует, что заведомо сложно устроены аттракторы краевой задачи (16).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Ярославский государственный университет

Поступило 15.11.2000