А. В. Фурсиков, Ю. С. Эмануилов, Точная управляемость уравнений Навье–Стокса и Буссинеска, УМН, 1999, том 54, выпуск 3(327), 93–146

DOI: https://doi.org/10.4213/rm153

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:
IP: 54.70.40.11
10 апреля 2019 г., 22:24:31
ТОЧНАЯ УПРАВЛЯЕМОСТЬ УРАВНЕНИЙ НАВЬЕ-СТОКСА И БУССИНСКА

А. В. Фурсиков, О. Ю. Эмануилов

СОДЕРЖАНИЕ

§ 1. Постановка задач и формулировка основных результатов 98
 1.1. Точная управляемость системы Навье-Стокса с границы области 98
 1.2. Точная управляемость системы Навье-Стокса посредством локального распределенного управления 99
 1.3. Точная управляемость системы Буссинеска 101
 1.4. Точная локальная управляемость и аппроксимативная управляемость системы Буссинеска ... 103
 1.5. Некоторые приложения ... 105

§ 2. Карлменовские оценки ... 107
 2.1. Предварительные сведения ... 107
 2.2. Карлменовские оценки решений системы (2.9), (2.10) 110
 2.3. Окончательные оценки .. 115

§ 3. Разрешимость задачи точной управляемости для линеаризованной системы Буссинеска .. 121
 3.1. Постановка задачи .. 121
 3.2. Вспомогательная экстремальная задача ... 123
 3.3. Доказательство основного результата ... 125

§ 4. Локальная точная управляемость системы Буссинеска 127

§ 5. Аппроксимативная управляемость системы Буссинеска: следение к случаю линейной системы специального вида 128
 5.1. Идея доказательства ... 128
 5.2. Аппроксимативная управляемость системы Буссинеска 131

§ 6. О точной управляемости одной линейной системы 135
 6.1. Доказательство леммы 5.1 .. 135
 6.2. Доказательство теоремы 5.1 ... 138

Список литературы ... 141

Работа первого автора выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 96-01-00947). Работа второго автора выполнена при частичной поддержке KIAS (M97003).
Работа посвящена изучению точной управляемости уравнений Навье–Стокса и Буссинеска, описывающих течение вязкой нестационарной жидкости без учета и с учетом тепловых процессов. Чтобы сформулировать различные постановки задачи о точной управляемости, рассмотрим задачу Коши для абстрактного эволюционного уравнения

\[\frac{\partial v(t)}{\partial t} + A(v(t)) = Bu(t) + f(t), \]
\[v(t, \cdot)|_{t=0} = v_0, \]

где \(v(t) \) — фазовая функция, определенная при \(t \in [0, T] \) и принимающая значения в фазовом пространстве \(X \). \(u(t) \) — управление, \(A \) — линейный оператор, \(f(t) \) — заданная правая часть. Предположим, что нам задано решение \(\tilde{v}(t) \) уравнения

\[\frac{\partial \tilde{v}(t)}{\partial t} + A(\tilde{v}(t)) = f(t) \]

с теми же оператором \(A \) и правой частью \(f \), что и в (0.1), но без управления \(u \). При этом предполагается, что \(\tilde{v}(0) \neq v_0 \). Задача точной управляемости состоит в построении такого управления \(u(t) \), чтобы решение задачи Коши (0.1), (0.2) с этим управлением в момент времени \(t = T \) совпадает с заданным решением \(\tilde{v}(t) \):

\[v(t)|_{t=T} = \tilde{v}(t)|_{t=T}. \]

Если дополнительно известно, что \(v_0 \) достаточно близко к \(\tilde{v}(0, \cdot) \) в норме \(X \):

\[\|\tilde{v}(0, \cdot) - v_0\|_X \leq \varepsilon, \]

где \(\varepsilon \equiv \varepsilon(\tilde{v}) \) — достаточно мало, то задача о построении управления \(u \) такого, что решение \(v \) задачи Коши (0.1), (0.2) удовлетворяет (0.4), называется задачей о локальной точной управляемости уравнения (0.1).

Отметим, что если в правую часть равенства (0.4) подставить произвольный элемент \(v_1 \) вместо значения \(\tilde{v}(t) \) решения уравнения (0.3), то в случае, когда уравнение (0.1) необратимо по времени, задача точной управляемости (0.1), (0.2), (0.4), вообще говоря, не будет иметь решения. Именно таким образом такими уравнениями являются системы Навье–Стокса и Буссинеска. (В случае уравнений (0.1), обратимых по времени, например, в случае гиперболических систем, можно поставить в правую часть (0.4) произвольную достаточно гладкую функцию \(v_1 \).)

Для обратимых по времени эволюционных уравнений часто ставится задача априорной управляемости, которая состоит в следующем: для управляемой системы (0.1), (0.2), любого фиксированного элемента \(v_1 \in X \) и любого \(\varepsilon > 0 \) построить такое управление \(u \), чтобы решение задачи (0.1), (0.2) в момент времени \(t = T \) удовлетворяло условию

\[\|v(T, \cdot) - v_1\|_X \leq \varepsilon. \]
Точная управляемость уравнений Навье—Стокса и Гуссинеска

Теория управляемости для эволюционных уравнений в частных производных начала развиваться в 60-х годах. Ее основы были заложены в работах Ю. В. Егорова [18], Д. Рассела [113]—[114], Г. Фатторини [24] (см. также статьи Т. Сейдлана [116], В. Литтлана [102]). В частности, в этих работах был разработан метод моментов, сводящий решение задачи точной управляемости к вопросам теории рядов экспонент (о современном состоянии этого метода см. [1], [3]), а также введены принципы дualityности, сводящих задачу управляемости для эволюционного уравнения к задаче наблюдаемости для сопряженного уравнения. Общий обзор состояния теории до 1978 года дан в работе Д. Рассела [113].

Начиная с середины осенних десятков годов интерес к теории управляемости существенно возрастает. При этом в основном изучаются случаи гиперболических уравнений. В 1986 г. появилась работа Л. Ф. Ху [51], в которой были найдены достаточные условия наблюдаемости для гиперболического уравнения второго порядка. Впоследствии методы управления гиперболическими уравнениями получили широкое распространение и в теории управляющих систем, что позволило получить достаточные условия разрешимости (ближе к необходимым) в терминах условий нелокулярности (см. [4], [58], [90]).

Интересные результаты по управляемости гиперболических и ближних к ним уравнений получены в [83]—[90], [47]—[52], [128], [130].

Как уже отмечалось, из-за недостаточности некоторых задачи Коши для сопряженного уравнения удается выводить результаты по управляемости исходного уравнения. Одним из наиболее мощных методов доказательства единственности задачи Коши являются кривые, конечные решения. Поэтому краткий обзор развития этой теории кривых конечных решений, приведенный ниже, представляется полезным.

После появления в начале 90-х годов фундаментальных результатов Л. Хёрмандера [53], [54] и последующих работ В. Исаэба [65]—[68] теория кривых конечных решений развивалась в нескольких направлениях, среди которых упомянут теорию кривых конечных решений в пространствах L^p, где $p \neq 2$ (см. [69], [70], [72], [73], [118], [119], [123]), а также теорию кривых конечных решений с сингулярными весовыми функциями [69].

Кривые конечные решения для эллиптических и параболических уравнений с некваздически прямой частной были получены в [19], [21], [64]. Случай гиперболического уравнения рассмотрен в работе А. Руиза [12]. Наиболее общие результаты получены в работах Д. Татару [120]—[123].

С начала 90-х годов в задачах точной граничной управляемости стали широко использовать кривые конечные решения. При помощи кривых конечных решений А. Каземи, М. Клебанов решили в [71] задачу наблюдаемости для волнового уравнения, а И. Лазицкая, Р. Триджан в [86] исследовали управляемость системы гиперболических уравнений. Случай управляемости гиперболических уравнений в областях с
внешней границей рассмотрен в работах П. ГрибOUGH [46], и А. Хейбига, М. Моус-Соузн [50].

Подавляющее большинство из упомянутых выше работ посвящено задачам управления в линейных эволюционных уравнениях. В случае нелинейных уравнений известно значительно меньше. Так, для простейшего одномерного гиперболического уравнения $u_{tt} - u_{xx} + y^3 = 0$ вопрос о точной управляемости является открытым. Известны результаты о локальной управляемости (см. [113]), а также нуль-управляемости за прошедший отрезок времени, зависящий от энергии начальных данных. Для одномерного гиперболического уравнения с нелинейностью, растущей на бесконечности не быстрее $|y| \ln^+ |y|$, существование решения задачи управляемости доказано в [128], а для нелинейностей типа $e^y, -y^3 - y$ в [57].

Ж.-Л. Льонсон в [93], [94] была выдвинута гипотеза о глобальной управляемости синтезой Навье–Стокса с границными или локально распределенными управлением. После этой работы с начала 90-х годов начали интенсивно исследоваться управляемость параболических уравнений с простейшими нелинейностями и управляемость уравнений, описывающих течение жидкости.

Аппроксимативная управляемость уравнений Стокса изучена в [93], [94], [96], [32]–[35], [19]–[21]. Задача об аппроксимативной управляемости посредством локальной однонаправленной внешней силой, поставленная Ж.-Л. Льонсон в [94], исследована И. И. Диасом, А. В. Фурсиковым [17] и Ж.-Л. Льонсон, Э. Зуазуа [100].

Аппроксимативная управляемость для полнуюиевенного параболического уравнения с нелинейностью, растущей на бесконечности не быстрее линейной функции, установлена в работах К. Фабье, Ж.-П. Пуэли и Э. Зуазуа [22], [23] и в [27], [129] для нелинейного члена, содержащего градиент.

Для нелинейного параболического уравнения с квадратичной или более высокой нелинейностью ситуация кардинально меняется. В работах [15], [59] в случае полнуюиевенного уравнения с нелинейностью типа y^2, а в [33]–[35] для уравнения Бюргера получены априорные оценки, из которых непосредственно вытекает теорема о несуществовании решения задачи об аппроксимативной управляемости при некоторых начальных данных для соответствующего параболического уравнения. (В случае одномерного полнуюиевенного параболического уравнения детальный анализ имеется в [41].)

Наиболее мощным методом доказательства точной управляемости нелинейных параболических уравнений, известным в настоящее время, является метод построения решения с помощью экстремальной задачи и последующего применения кардинальских оценок. Основы этого метода были заложены А. В. Фурсиковым и О. Ю. Эмануиловым в работах [35], [36], где исследована минимальная точная управляемость уравнения Бюргера и двумерного уравнения Гельмгольца. Кардинальная оценка впервые получена в [60]. Точная управляемость для полнуюиевенных параболических уравнений с нелинейностью, растущей на бесконечности не быстрее линейной функции, установлена в работах [31], [10] и [34]. В [25], [26] этот результат перенесен на случай полнуюиевенного параболического уравнения с нелинейным членом, растущим на бесконечности не быстрее $|y| \ln^+ |y|$. Отметим также работу [127], где управляемость одномерного параболического уравнения аналитической нелинейностью установлена с помощью теоремы Коши–Ковалевской.

Новый подход к доказательству разрешимости задачи управляемости линейных параболических уравнений с коэффициентами, не зависящими от времени, предложен...
в работе Г. Лебо и Л. Робинсона [91]. Интересные результаты для одномерного уравнения теплопроводности с быстрооппозиционными коэффициентами получены в недавней работе А. Лонгса и Э. Зага [105]. Вопросы управляемости уравнения Бюргера рассмотрены также в [56], [6], [7].

Точная нуль-управляемость уравнений Навье–Стокса установлена в [36], [28].

Точная локальная управляемость системой Навье–Стокса и системой Буссинеска доказана в работах А. В. Фурсикова, О. Ю. Эмануилова [37]–[42] для управления, распределенного по всей границе и по ее части, а также с локальными распределенными ограничениями.

Точная локальная управляемость системы Навье–Стокса и Буссинеска с локально распределенным управлением и граничными условиями типа проськальвания изучалась в [62]. Случай локальной распределенной управляемости системы Навье–Стокса с нулевыми граничными условиями рассмотрен в работе О. Ю. Эмануилова [57] при дополнительных ограничениях на заданную скорость.

Апроксимативная управляемость двумерного уравнения Эйлера и двумерной системы Навье–Стокса с граничными условиями типа проськальвания и граничным управлением установлена в работах Ж. М. Корона [11]–[13]. Позднее результат был распространен на случай трёхмерного уравнения Эйлера в [43].

Основным объектом изучения в настоящей работе является задача управляемости системы Буссинеска, заданной на цилиндре $Q = (0, T) \times \Pi$, где $(0, T)$ – временной интервал, а $\Pi = \mathbb{R}^n / L \mathbb{Z}^n$ – н-мерный тор, т.е. прямое произведение n-мерных отрезков длины L. Размерность n торо Π берется равной 2 или 3. При этом управление u предполагается распределенным и имеющим носитель, принадлежащий цилиндр $Q^\omega = (0, T) \times \omega$, где ω – произвольная ограниченная подобласть торо Π. Результаты для уравнений Навье–Стокса получены как прямые следствия соответствующих результатов для уравнений Буссинеска. Однако для нас во внимание пройдет обсуждать результаты работы на примере системы Навье–Стокса, заданной на цилиндре Q:

$$
(0.7) \quad \partial_t v(t, x) - \Delta v(t, x) + (v, \nabla)u + \nabla p(t, x) = f(t, x) + u(t, x), \quad \text{div } v = 0,
$$

$$
(0.8) \quad v(t, x)|_{t=0} = \nu_0(x),
$$

где $\text{supp } u \subset Q^\omega$.

В настоящей работе доказана точная управляемость системы (0.7), (0.8) для $Q^\omega = (0, T) \times \omega$ со сколь угодно малым временем T и с любым открытым подмножеством $\omega \subset \Pi$, содержащим носитель управления u.

Решение вопроса о точной управляемости на отрезке $[0, T]$ задачи (0.7), (0.8), очевидно, сходится к решению задачи об аппроксимативной управляемости на $[0, T_1]$ ($T_1 < T$) и последующему решению задачи о локальной точной управляемости на $[T_1, T]$. Отметим, что в случае задачи (0.7), (0.8) $X = V^1(\Pi) = \{ v \in (H^1(\Pi))^n : \text{div } v = 0 \}$, где $H^1(\Pi) –$ пространство Соболева векторных полей, определенных на торе Π. Таким образом, определена неравенства (0.5), (0.6), а с ними и понятие локальной точной управляемости и аппроксимативной управляемости.
Апроксимативная управляемость задачи (0.7), (0.8) доказана на отрезке \([0, T_1]\), где \(T_1 \equiv T_1(\varepsilon)\) и \(\varepsilon\) — число из неравенства (0.6). При этом \(T_1(\varepsilon) \to 0\), если \(\varepsilon \to 0\).

Из доказательства теоремы о локальной точной управляемости на отрезке времени \([T_1, T]\), приведённой в работе, следует, что отрезок \([T_1, T]\) можно выбрать сколь угодно малым, если \(\varepsilon\) из неравенства (0.5) достаточно мало. В итоге получается теорема о (нелокальной) точной управляемости с управлением \(u\), имеющим носитель на \(Q^\omega = (0, T) \times \omega\), где \(T\) может быть сколько угодно малым, а \(\omega\) — произвольное открытое множество в \(\Pi\).

Из теоремы о точной управляемости следует возможность стабилизации стационарных неустойчивых решений, существование сколь угодно сложных (хаотических) решений уравнений Навье—Стокса и Бугриса и некоторое свойство обратимости этих систем (см. ниже п. 1.5).

Наиболее открытым, что, как показано ниже в § 1, из теоремы о точной управляемости системы (0.1), (0.2), заданной на торе, легко вытекает теорема об управляемости системы Навье—Стокса, заданной в произвольной ограниченной области \(\Omega\) с управлением, распределенным на всей границе \(\partial\Omega\).

§ 1. Постановка задачи и формулировка основных результатов

1.1. Точная управляемость системы Навье—Стокса с границы области.

Пусть \(\Omega \subset \mathbb{R}^n, \ n = 2, 3\), — ограниченная область с граничной \(\partial\Omega\) класса \(C^\infty\), \(T > 0\), \(\Pi = (0, T) \times \Omega, \Sigma = (0, T) \times \partial\Omega\) — боковая поверхность цилиндра \(\Pi\). Рассмотрим следующую краевую задачу для системы уравнений Навье—Стокса:

\[
(1.1) \quad \partial_t v(t, x) - \Delta v + (v, \nabla) v + \nabla p = f(t, x), \quad (t, x) \in \Pi, \\
(1.2) \quad \text{div} v(t, x) \equiv \sum_{i=1}^{n} \partial_x v_i(t, x) = 0, \quad (t, x) \in \Pi, \\
(1.3) \quad v|_{t=0} = \alpha(t, x), \\
(1.4) \quad v(t, x)|_{t=0} = \alpha_0(x),
\]

где \(\partial_t = \frac{\partial}{\partial t}\), \(\partial_i = \frac{\partial}{\partial x_i}\), \(x = (x_1, \ldots, x_n) \in \Omega\), \(v(t, x) = (v_1(t, x), \ldots, v_n(t, x))\) — векторное поле скорости течения жидкости, \(\nabla p(t, x)\) — градиент давления в жидкости, \(\Delta\) — оператор Лапласа, \((v, \nabla)v = \sum_{i=1}^{n} v_i \partial_x v_i\), \(f(t, x) = (f_1(t, x), \ldots, f_n(t, x))\) — заданная плотность внешних сил, \(\alpha_0\) — заданное начальное векторное поле, а векторное поле \(\alpha\), определённое на граничной \(\Sigma\), не предполагается заданным, а является управлением.

Задача точной управляемости системы Навье—Стокса с управлением, заданным на границе \(\Sigma\), т.е. задача точной граничной управляемости, состоит в следующем. Пусть нам дано некоторое решение \((\tilde{v}(t, x), \nabla \tilde{v}(t, x))\) системы уравнений (1.1), (1.2):

\[
(1.5) \quad \partial_t \tilde{v}(t, x) - \Delta \tilde{v} + (\tilde{v}, \nabla) \tilde{v} + \nabla \tilde{p} = f(t, x), \quad \text{div} \tilde{v} = 0.
\]

Требуется найти такое управление \(\alpha(t, x)\) на границе \(\Sigma\), чтобы решение \(v(t, x)\) задачи (1.1)–(1.4) в момент времени \(t = T\) совпадало с \(\tilde{v}(T, x)\):

\[
(1.6) \quad v(t, x)|_{t=T} \equiv \tilde{v}(T, x).
\]
Для уточнения приведённой выше постановки задачи и формулировки основного результата введём необходимые функциональные пространства. Через \(H^k(\Omega) \), \(k \) — натуральное число, обозначается пространство Соболева скалярных функций, квадратично суммируемых на \(\Omega \) вместе со всеми производными до порядка \(k \), а через \((H^k(\Omega))^n \) обозначается аналогичное пространство Соболева векторных полей. Положим

\[
V^k(\Omega) = \{ v(x) = (v_1, \ldots, v_n) \in (H^k(\Omega))^n : \text{div} \, v = 0 \},
\]

\[
H^{1,2}(\Pi) = \{ v(t, x) \in L_2(0, T; H^2(\Omega)) : \partial_t v \in L_2(0, T; H^0(\Omega)) \},
\]

\[
V^{1,2}(\Pi) = \{ v \in (H^{1,2}(\Pi))^n : \text{div} \, v = 0 \}.
\]

В более общем случае для \(1 \leq p \leq \infty, k \geq 0 \) положим

\[
V^k_p(\Omega) = \{ v(x) \in (W^k_p(\Omega))^n : \text{div} \, v = 0 \},
\]

где \(W^k_p(\Omega) \) — пространство Соболева функций, суммируемых в степени \(p \) вместе с производными до порядка \(k \). Определение пространства Соболева \(H^k(\Omega) \) и \(W^k_p(\Omega) \) с дробными \(k \) см. в [99], [117]. Кроме того, будут использоваться пространства функций \(C^{k, \alpha}(\Omega) \), где \(k \) — целое или непрерывное, \(\alpha \in (0, 1) \), состоящие из \(k \) раз непрерывно дифференцируемых функций на \(\Pi \), все \(k \)-е производные которых удовлетворяют условию Гёдерана с показателем \(\alpha \).

Одним из основных результатов настоящей работы является

Теорема 1.1. Пусть \(f \in L_2(0, T; V^2(\Omega)), v_0 \in V^4(\Omega) \) и задано решение \((\hat{v}, \hat{p}) \in C^1(0, T; V^4(\Omega)) \times L_2(0, T; H^1(\Omega)) \) уравнений (1.5). Предполагается, что на любой связной компоненте \(\Gamma_i \) границ \\(\partial \Pi \) справедливы равенства:

\[
\int_{\Gamma_i} \langle \hat{v}(t, x), v(x) \rangle \, ds = 0 \quad \text{п.а.,} \quad t \in [0, T], \quad \int_{\Gamma_i} (v_0(x), v(x)) \, ds = 0,
\]

где \(v(x) \) — векторное поле внешних нормалей к \(\partial \Pi \). Тогда существует решение \((v, \nabla p, \alpha) \in V^{1,2}(\Pi) \times (L_2(\Omega))^n \times L_2(0, T; (H^{3/2}(\partial \Pi))^n) \) задачи (1.1)–(1.4), (1.6).

Доказательство этой теоремы можно свести к доказательству утверждения, сформулированного в следующем пункте.

1.2. Точная управляемость системы Навье—Стокса с прямым локальным распределённым управлением. Пусть \(L > 0 \) — некоторое число, \(\Pi = \mathbb{R}^n / \mathbb{Z}^n \) — \(n \)-мерный тор \(n = 2, 3 \), у которого каждая образующая имеет длину \(L \), \(\omega \subset \Pi \) — некоторое открытое подмножество тора \(\Pi \), \(Q = (0, T) \times \Pi, Q^\prime = (0, T) \times \omega \). На цилиндре \(Q \) рассмотрим систему уравнений Навье—Стокса

\[
\partial_t v(t, x) - \Delta v + (\alpha, \nabla) v + \nabla p = f(t, x) + u(t, x), \quad (t, x) \in Q,
\]

\[
\text{div} \, v = 0,
\]
с начальным условием
\begin{equation}
\left. v(t, x) \right|_{t=0} = \nu_0(x), \quad x \in \Pi.
\end{equation}

Здесь f, ν_0 — заданные векторные поля, а $u(t, x)$ — управление, сосредоточенное на цилиндре Q^ω. Отметим, что задание соотношений (1.12)–(1.14) на торе в точности означает, что эти соотношения определены при любых $x \in \mathbb{R}^n$ и все векторные поля, входящие в (1.12)–(1.14), т.е. $v(t, x)$, $\nabla p(t, x)$, $f(t, x)$, $u(t, x)$, $\nu_0(x)$, где $x = (x_1, \ldots, x_n)$, периодичны по каждому x_i с периодом L. Например:

$$
v(t, x_1, \ldots, x_j + L, \ldots, x_n) = v(t, x_1, \ldots, x_j, \ldots, x_n) \quad \forall j = 1, \ldots, n.
$$

Аналогично (1.7)–(1.10) введем пространства $V^k(\Pi)$, $V^k_p(\Pi)$ на торе Π и пространства $H^{1,2}(Q)$, $V^{1,2}(Q)$ на цилиндре $Q = (0, T) \times \Pi$.

Определим пространство управлений
\begin{equation}
U(\omega) = \left\{ u(t, x) \in (L_2(Q))^n : \text{supp } u \subset Q^\omega \right\}.
\end{equation}

Справедлива следующая теорема о точной управляемости системы Навье–Стокса (1.12), (1.13) посредством локального распределенного управления.

Теорема 1.2. Пусть $f \in L^2(0, T; V^0(\Pi))$, $\nu_0 \in V^1(\Pi)$ и Identity resolved, $\tilde{v}, \nabla \tilde{p}$, $\tilde{v} \in C^1(0, T, V^0(\Pi)) \cap (C^{2,\alpha}(\Pi))^n \times (L_2(Q))^n$ системы (1.5), определенной на цилиндре Q. Тогда существует решение

$$(v, \nabla p, u) \in V^{1,2}(Q) \times (L_2(Q))^n \times U(\omega)$$

задачи (1.12)–(1.14), (1.6).

Выведем теорему 1.1 из теоремы 1.2.

Доказательство теоремы 1.1. Сдвигая Ω на соответствующий вектор $x_0 \in \mathbb{R}^n$, можно считать, что Ω является подвыпуклым кубом K.

$$K = \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_j \leq L, \quad j = 1, \ldots, n \right\},$$

где $L > 0$ — некоторое число, зависящее от Ω. Отождествим у куба K противоположные грани, т.е. множество

$$\left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_j = 0 \right\} \quad \text{и} \quad \left\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_j = L \right\}$$

при каждом $j \in \{1, \ldots, n\}$, получим тор Π. Итак, мы осуществили вложение $\Omega \subset \Pi$. Учитывая (1.11), можно из условия предложения 2.3 из [40] продолжить векторное поле $\tilde{v} \in C^1(0, T; V^4(\Omega))$ до векторного поля $\tilde{R}\tilde{v} \in C^1(0, T; V^4(K)) \cap C^{2,\alpha}(K)$ и векторное поле $\nu_0 \in V^4(\Omega)$ до поля $R\nu_0 \in V^4(K) \cap C^{2,\alpha}(K)$ с некоторым $\alpha \in (0, 1)$. При этом метод доказательства предложения 2.3 из [40] позволяет выбрать векторное поле $\tilde{R}\tilde{v}$ и $R\nu_0$ таким образом, чтобы $\tilde{R}\tilde{v} = 0$ в некоторой окрестности множества $(0, T) \times \partial K$, и $R\nu_0 = 0$ в некоторой окрестности ∂K. Это свойство позволяет продолжить $\tilde{R}\tilde{v}$ и $R\nu_0$ периодически с K на \mathbb{R}^n, т.е. считать, что $\tilde{R}\tilde{v}$ и
точная управляемость уравнений Навье–Стокса и Буссинеска

R_{0} определены соответственно на Q и Π, причем $\tilde{R}\tilde{v} \in C^{1}(0, T; V^{0}(\Pi) \cap C^{2, 0}(\Pi))$ и $R_{0} \in V^{0}(\Pi) \cap C^{2, 0}(\Pi)$. Подставив $\tilde{R}\tilde{v}$ в (1.5), получим, что
\[
\partial_{t}R\tilde{v}(t, x) - \Delta R\tilde{v} + (\tilde{R}\tilde{v}, \nabla)R\tilde{v} = h(t, x),
\]
ge где $h(t, x)$ — векторное поле, удовлетворяющее условию
\[
h|_{(0, T)} = f - \nabla \tilde{p}.
\]
 Так как $\tilde{R}\tilde{v} \in C^{1}(0, T; V^{0}(\Pi) \cap C^{2, 0}(\Pi))$, то в силу (1.16) $h(t, x) \in (C(\Omega))^{n} \subset (L_{2}(\Omega))^{n}$. Применим к $h(t, x)$ при почти всех $t \in (0, T)$ разложение Вейля, получим, что
\[
h(t, x) = h_{\sigma}(t, x) + \nabla \tilde{q}(t, x),
\]
ge где $h_{\sigma}(t, x) \subset L_{2}(0, T; V^{0}(\Pi))$, $\nabla \tilde{q}(t, x) \subset (L_{2}(\Omega))^{n}$. Из (1.16), (1.18) следует, что
\[
\partial_{t}(R\tilde{v}) - \Delta(R\tilde{v}) + ((R\tilde{v}), \nabla)(R\tilde{v}) + \nabla \tilde{q} = h_{\sigma}(t, x), \quad \text{div} \quad R\tilde{v} = 0.
\]
 Если в задаче (1.12)-(1.14) заменить f на h_{σ} и ν_{0} на R_{0}, то выполняются условия теоремы 1.2, в которой $\gamma = \Pi \setminus \Omega$, а пара (\tilde{v}, \tilde{q}) заменена на пару $(\tilde{R}\tilde{v}, \tilde{q})$, удовлетворяющую (1.19). Поставим в силу теоремы 1.2 существует решение $(\nu, \nabla \nu, u)$ задачи
(1.12)-(1.14) с $f = h_{\sigma}$, $\nu_{0} = R_{0}$, удовлетворяющее условию
\[
u(T, x) \equiv R\tilde{v}(T, x), \quad x \in \Pi.
\]
 Сужение (1.20) на Π совпадает с (1.6), а сужение (1.12) с $f = h_{\sigma}$ на Π в силу (1.18), (1.17) можно записать в виде
\[
\partial_{t}v - \Delta v + (\nu, \nabla)v + \nabla p + \nabla \tilde{p} + \nabla \tilde{q} = f.
\]
 Положим $\nabla p + \nabla \tilde{p} + \nabla \tilde{q} = \nabla p_{1}$ и введем обозначение $v|_{(0, T) \times \partial \Omega} = \alpha$, получим, что тройка $(\nu, \nabla p_{1}, \alpha)$ удовлетворяет утверждениям теоремы 1.1.

1.3. Точная управляемость системы Буссинеска. В квадрате $\Pi = (0, T) \times \Omega$, где $\Omega \subset \mathbb{R}^{n}$, $n = 2, 3$, — ограниченная область с границей $\partial \Omega \subset C^{\infty}$, рассмотрим систему уравнений Буссинеска

(1.21) \[
\partial_{t}v(t, x) - \Delta v + (\nu, \nabla)v + \theta(t, x)\varepsilon + \nabla p(t, x) = f(t, x), \quad \text{div} \nu = 0,
\]
(1.22)
(1.23)
(1.24)

\[
\nu(t, x)|_{t=0} = \nu_{0}(x), \quad \theta(t, x)|_{t=0} = \theta_{0}(x),
\]
ge где $\Sigma = (0, T) \times \partial \Omega$, $\nu(t, x) = (v_{1}(t, x), \ldots, v_{n}(t, x))$ — векторное поле скорости, ε — напряжения, ε — напряжения скорости, $f(t, x)$ — плотность внешних сил, $g(t, x)$ — плотность источников тепла, ν_{0}, θ_{0} — начальные условия, α, β — граничные условия.

Поставим задачу о точной управляемости с границы для системы Буссинеска аналитична соответствующей постановке для системы Навье–Стокса: пусть $(\tilde{v}(t, x), \nabla \tilde{p}(t, x), \tilde{\theta}(t, x)) \in C^{1}(0, T; V^{1}(\Pi)) \times (L_{2}(\Pi))^{n} \times C^{1}(0, T; H^{1}(\Pi))$ удовлетворяет уравнениям (1.21), (1.22); требуется найти такое управление
\[
(\alpha, \beta) \in L_{2}(0, T; (H^{3/2}(\partial \Omega))^{n}) \times L_{2}(0, T; H^{3/2}(\partial \Omega)),
\]
чтобы решение (ν, p, θ) задачи (1.21)-(1.24) удовлетворяло условию (1.25)
\[
\nu(T, x) = \tilde{v}(T, x), \quad \theta(T, x) = \tilde{\theta}(T, x).
\]
Справедливо
Теорема 1.3. Пусть $n = 2, 3$, заданы $f \in L_2(0, T; V^{0}(\Omega))$, $g \in L_2(0, T; L_2(\Omega))$ и набор функций $(\hat{v}, \hat{\theta}) \in C^1(0, T; V^{4}(\Omega)) \times (L_2(\Omega))^n \times C^1(0, T; H^{4}(\Omega))$, который удовлетворяет уравнениям (1.21), (1.22) и условию (1.11). Тогда для любого начального условия $(v_0, \theta_0) \in V^{4}(\Omega) \times H^{4}(\Omega)$, удовлетворяющего (1.11), существует такое граничное управление $(\alpha, \beta) \in L_2(0, T; (H^{3/2}(\partial\Omega))^n) \times L_2(0, T; (H^{3/2}(\partial\Omega))^n)$, что решение $(v, \nabla p, \theta)$ задачи (1.21)–(1.24) существует в пространстве $V^{1,2}(\Pi) \times (L_2(\Pi))^n \times H^{1,2}(\Pi)$, и для него выполнены условия (1.25).

Сформулируем теперь результат о точной управляемости системы Буссинеска посредством локального распределенного управления. Пусть $\Pi = \mathbb{R}^n / L \mathbb{Z} - \text{тор, } \omega \subset \Pi$ — некоторое открытое подмножество тора, $Q = (0, T) \times \Pi$. $Q' = (0, T) \times \omega$.

На цилиндре Q рассмотрим систему Буссинеска с локальной распределенной управлением:

$$
N(v, \theta) \equiv \partial_t v(t, x) - \Delta v + (v, \nabla v + \theta(t, x)) = \nabla p + f(t, x) + u'(t, x), \quad \text{div} v = 0,
$$

$$
R(v, \theta) \equiv \partial_t \theta(t, x) - \Delta \theta + (v, \nabla \theta) = g(t, x) + u_{n+1}(t, x),
$$

удовлетворяющую начальным условиям (1.24), заданным на торе Π. Здесь функция $u(t, x) \equiv (u'(t, x), u_{n+1}(t, x)) \equiv (u_1, \ldots, u_n, u_{n+1})$ — управление. Аналогично (1.15) введем пространство управления посредством формулы

$$
U'(\omega) = U'(\omega; 0, T) = \{ u(t, x) = (u', u_{n+1}) \in (L_2(Q))^n; \text{supp } u \subset Q' \}
$$

(символы $0, T$ указывают временной интервал $[0, T]$), на котором сосредоточено управление $u \in U'(\omega; 0, T)$.

Пусть на торе Q

$$
(\hat{v}, \nabla \hat{p}, \hat{\theta}) \in C^1(0, T; V^{0}(\Pi) \cap (C^{2, \alpha}(\Pi))^n) \times (L_2(\Pi))^n \times C^1(0, T; C^{2, \alpha}(\Pi))
$$

при некотором $\alpha \in (0, 1)$ удовлетворяет на Q уравнениям (1.21), (1.22). Требуется найти такое управление $u = (u', u_{n+1}) \in U'(\omega; 0, T)$, чтобы для решения $(v, \nabla p, \theta)$ задачи (1.26), (1.27), (1.24) на торе Π выполнялись равенства (1.25).

Теорема 1.4. Пусть размерность $n = 2$ или 3, заданы правые части $f \in L_2(0, T; V^{0}(\Pi))$, $g \in L_2(0, T; L_2(\Pi))$, а также решение (1.29) уравнений (1.21), (1.22), определенных на цилиндре Q, с этими правыми частями. Тогда для любых начальных условий $v_0 \in V^{0}(\Pi) \cap (C^{2, \alpha}(\Pi))^n$, $\theta_0 \in C^{2, \alpha}(\Pi)$ существует решение $(v, \nabla p, \theta, u) \in V^{1,2}(Q) \times (L_2(Q))^n \times H^{1,2}(Q) \times U'(\omega; 0, T)$ задачи (1.26), (1.27), (1.24) удовлетворяющее на торе Π в момент времени T соотношениям (1.25).

Покажем, что из теоремы 1.4 легко следует сформулированная выше теорема 1.3.
Доказательство теоремы 1.3. Пусть Π — торо, построенный по Ω, как в доказательстве теоремы 1.1, $\tilde{R} \tilde{v}$ — продолжение \tilde{v} с Π на Q, а Rg — продолжение θ_0 с Π на Π, построенный при доказательстве той же теоремы. Пусть $\tilde{R} \tilde{v} \in C(0, T; W^{1,2}_p(\Pi))$ — продолжение \tilde{v} с Π на Q. Подставим $\tilde{R} \tilde{v}, Rg$ в (1.21), (1.22), аналогично (1.16) получим:

$$
\begin{align*}
\partial_t (\tilde{R} \tilde{v}) - \Delta \tilde{R} \tilde{v} + (\tilde{R} \tilde{v}, \nabla) \tilde{R} \tilde{v} + R \tilde{v} \theta_0 & = h(t, x), \\
\partial_t Rg - \Delta Rg + (\tilde{R} \tilde{v}, \nabla Rg) & = Rg,
\end{align*}
$$

где Rg — некоторое продолжение g с Π на Q, а h удовлетворяет (1.17).

Подставим в (1.30) разложение Вейля (1.18) для векторного поля h и подложим $\omega = \Pi \setminus \Omega$, получим, что система (1.26). (1.27) с $f = h_\omega$ и Rg вместо g удовлетворяет условиям теоремы 1.4. Применяя эту теорему, завершаем доказательство теоремы 1.3.

Из задач, наша цель состоит в доказательстве теорем 1.2 и 1.4. Их доказательства аналогичны, поэтому доказательство теоремы 1.4 по понятным причинам чуть сложнее. Поэтому мы дадим подробное доказательство теоремы 1.4. Упрощения, позволяющие получить доказательство теоремы 1.2, очевидны.

В следующем пункте мы сведем доказательство теоремы 1.4 к доказательству локальной точной управляемости и доказательству аппроксимативной управляемости системы уравнений Буссинеска.

1.4. Точная локальная управляемость и аппроксимативная управляемость системы Буссинеска. Ослабим понятие точной управляемости в двух направлениях, введя понятия локальной точной и аппроксимативной управляемости.

1) Пусть набор (1.29) удовлетворяет на Q уравнению Буссинеска (1.21), (1.22). Система Буссинеска (1.26), (1.27) называется локально точной управляемой относительно пространства уравнений (1.28), если существует такое $\varepsilon_0 > 0$, что для любого $0 < \varepsilon < \varepsilon_0$ и для любого начального условия $(v_0, \theta_0) \in V^1(\Pi) \times H^1(\Pi)$, удовлетворяющего неравенству

$$
\|\tilde{v}(0, \cdot) - v_0\|_{V^1(\Pi)} + \|\tilde{\theta}(0, \cdot) - \theta_0\|_{H^1(\Pi)} \leq \varepsilon,
$$

существует такое управление $u \in U(\omega; 0, T)$, что решение $(v, \nabla v, \theta)$ задачи (1.26), (1.27), (1.24) с указанными начальными условиями и управлением существует в пространстве $V^{1,2}(Q) \times L^2(0, T; H^1(\Pi)) \times H^{1,2}(Q)$ и удовлетворяет условию (1.25).

Теорема 1.5. Система Буссинеска локально точна управляема относительно пространства уравнений (1.28). При этом параметр ε_0, непрерывно и монотонно убывающий, зависит от величин

$$
\frac{1}{T} + \|\tilde{v}\|_{C^1_1(0; T, W^2_p(\Pi))} + \|\tilde{\theta}\|_{C^1_1(0, T; W^2_p(\Pi))}.
$$

2) Пусть помимо начальных условий (1.24) задача пара

$$(v_1, \theta_1) \in (V^0(\Pi) \cap (C^{2,\alpha}(\Pi))^n) \times C^{2,\alpha}(\Pi).$$
Иногда нам будет полезно рассмотреть множество наборов вида

\[(1.32) \quad \sum_{i=0}^{1} \left(\|v_i\|_{V_0^2(\Pi_1 \cap C^{2,\alpha}(\Pi))}^2 + \|\theta_i\|_{C^{2,\alpha}(\Pi)}^2 \right) \leq K.\]

Система Буссинеска (1.26), (1.27), (1.24) называется априорно управляемой относительно пространства уравнений (1.28), если для любого \(\varepsilon > 0\) и любой пары \((v_1, \theta_1)\) из множества (1.32) найдутся момент времени \(T = T_{\varepsilon,K}\) и решение

\[(v, p, \theta, u) \in V^{1,2}(Q_{T_{\varepsilon,K}}) \times L_2(0, T_{\varepsilon,K}; H^1(\Pi)) \times H^{1,2}(Q_{T_{\varepsilon,K}}) \times U(\omega; 0, T_{\varepsilon,K})\]

задачи (1.26), (1.27), (1.24) такие, что

\[(1.33) \quad \|v(T_{\varepsilon,K}, \cdot) - v_1\|_{V^1(\Pi)} + \|\theta(T_{\varepsilon,K}, \cdot) - \theta_1\|_{H^1(\Pi)} \leq \varepsilon.\]

Для этого \(Q_{T_{\varepsilon,K}} = (0, T_{\varepsilon,K}) \times \Pi.\)

Теорема 1.6. Система Буссинеска (1.26), (1.27), (1.24) априорно управляема относительно пространства уравнений (1.28). Более того, при каждом \(\varepsilon > 0\) и любом фиксированном \(K > 0\) время \(T = T_{\varepsilon,K}\) можно выбрать так, что

\[T_{\varepsilon,K} \to 0 \quad \text{при} \quad \varepsilon \to 0.\]

Доказательство теоремы 1.5, 1.6 будет пояснена останьшись часть этой работы. А сейчас введем с их помощью теорему 1.4.

Доказательство теоремы 1.4. Для построения необходимого управления разобьем отрезок времени \([0, T]\) на два \([0, S]\) и \([S, T]\), где \(S < T/2\). Пусть

\[\varepsilon_0 = \varepsilon_0 \left(\frac{1}{T} + \|\vec{\gamma}\|_{C^1(0,T; V_{\infty}^2(\Pi))} + \|\vec{\varphi}\|_{C^1(0,T; V_{\infty}^2(\Pi))} \right),\]

- непрерывная монотонно убывающая функция из теоремы 1.5. Выберем \(\varepsilon > 0\), удовлетворяющее неравенству

\[(1.34) \quad \varepsilon < \varepsilon_0 \left(\frac{2}{T} + \|\vec{\gamma}\|_{C^1(0,T; V_{\infty}^2(\Pi))} + \|\vec{\varphi}\|_{C^1(0,T; V_{\infty}^2(\Pi))} \right) \leq \varepsilon_0 \left(\frac{1}{T - S} + \|\vec{\gamma}\|_{C^1(S,T; V_{\infty}^2(\Pi))} + \|\vec{\varphi}\|_{C^1(S,T; V_{\infty}^2(\Pi))} \right),\]

причем второе неравенство (1.34) справедливо в силу монотонности функции \(\varepsilon_0(\lambda)\).

Поставим в начальный момент времени \(S < T/2\) начальное условие

\[(1.35) \quad v(t, x) \mid_{t=S} = v_S, \quad \theta(t, x) \mid_{t=S} = \theta_S \quad \text{с} \quad (v_S, \theta_S) \in V^4(\Pi) \times H^4(\Pi), \quad \text{удовлетворяющим неравенству}\]

\[\|\vec{\gamma}(S, \cdot) - v_S\|_{V^1(\Pi)} + \|\vec{\varphi}(S, \cdot) - \theta_S\|_{H^1(\Pi)} \leq \varepsilon,\]
Точная управляемость уравнений Навье-Стокса и Буссинеска

где ε — число из (1.31). Тогда в силу теоремы 1.5 существует управление $u \in U(\omega; S, T)$ такое, что для решения $(v, \nabla p, \theta)$ задачи (1.26), (1.27), (1.35) выполнено соотношение (1.25). Поэтому теорема 1.6 будет доказана, если мы возьмем $S < T/2$ и на временном отрезке $(0, S)$ выберем такое управление, что решение $(v, \nabla p, \theta)$ задачи (1.26), (1.27), (1.24) будет удовлетворять неравенству

$$(1.36) \quad \|\hat{v}(S, \cdot) - v(S, \cdot)\|_{V^1(\Pi)} + \|\hat{\theta}(S, \cdot) - \theta(S, \cdot)\|_{H^1(\Pi)} \leq \varepsilon,$$

где ε — число из (1.34).

После этого мы останемся применить теорему 1.5 с начальным условием $(v_S, \theta_S) = (v(S, \cdot), \theta(S, \cdot))$, поставленным в момент времени S.

Так как

$$(\hat{v}, \hat{\theta}) \in C^1(0, T; V^2_\infty(\Pi)) \times C^1(0, T; W^2_\infty(\Pi)) \subset C(0, T; V^1(\Pi)) \times C(0, T; H^1(\Pi)),$$

tо существует $\delta > 0$ такое, что

$$(1.37) \quad \|\hat{v}(\tau, \cdot) - \hat{v}(0, \cdot)\|_{V^1(\Pi)} + \|\hat{\theta}(\tau, \cdot) - \hat{\theta}(0, \cdot)\|_{H^1(\Pi)} \leq \varepsilon/2 \quad \forall 0 < \tau < \delta,$$

где ε — число из (1.34). В силу теоремы 1.6 существует такое $\varepsilon_1 < \varepsilon/2$, что $T_{\varepsilon_1} < \delta$ и на временном интервале $(0, T_{\varepsilon_1})$ можно выбрать управление $u \in U(\omega; 0, T_{\varepsilon_1})$ такое, что решение $(v, \nabla p, \theta)$ задачи (1.26), (1.27), (1.24) удовлетворяет неравенству

$$(1.38) \quad \|v(T_{\varepsilon_1}, \cdot) - v(0, \cdot)\|_{V^1(\Pi)} + \|\theta(T_{\varepsilon_1}, \cdot) - \theta(0, \cdot)\|_{H^1(\Pi)} \leq \varepsilon_1 < \varepsilon/2.$$

Из (1.37), (1.38) следует (1.36) с $S = T_{\varepsilon_1}$.

1.5. Некоторые приложения. Приведем некоторые приложения теорем об управляемости, сформулированных выше.

1. Стабилизируемость неустойчивых стационарных потоков. Пусть $(\hat{v}(x), \nabla \hat{p}(x)) \in V^2(\Omega) \times (L^2(\Omega))^n$ — стационарное решение системы Навье-Стокса, заданной в ограниченной области $\Omega \subset \mathbb{R}^n$:

$$-\Delta \hat{v}(x) + (\hat{v}, \nabla) \hat{v} + \nabla \hat{p}(x) = f(x), \quad \text{div} \hat{v} = 0,$$

$$\hat{v}|_{\partial \Omega} = 0.$$

Предположим, что это решение не является устойчивым, т.е. для любого $\varepsilon > 0$ существует такое начальное условие $v_0(x) \in \{v : \|v - \hat{v}\|_{V^1(\Omega)} < \varepsilon\}$, что решение $(v(t, x), \nabla p(t, x))$ системы Навье-Стокса (1.1)–(1.4) с $f(t, x) \equiv f(x), \alpha(t, x) \equiv 0$ не стремится к \hat{v} при $t \to \infty$.

$$\|v(t, \cdot) - \hat{v}\|_{V^1(\Omega)} \neq 0 \quad \text{при} \quad t \to \infty.$$

Неустойчивое стационарное решение $(\hat{v}, \nabla \hat{p})$ можно стабилизировать, если вместо краевых условий приложения включить граничное управление (1.3). Действительно, согласно теореме 1.1 для любого начального условия $v_0(x) \in V^1(\Omega)$ можно найти
такое граничное уравнение $a(t, x), (t, x) \in \Sigma$, что решение $(v(t, x)), \nabla p(t, x))$ задач (1.1)–(1.4) будет удовлетворять условию:

$$v(T, x) \equiv \tilde{v}(x).$$

Аналогичным свойством стабилизируются стационарных потоков с помощью граничного управления и системы уравнений Буссинеска.

2. Существование хаотических течений. Рассмотрим систему уравнений Буссинеска (1.26), (1.27), (1.24) на цилиндре $Q = (0, T) \times \Pi$, где Π – тангенциальную, а управление $u(t, x)$ сосредоточено в $Q^\omega = (0, T) \times \omega$, где $\omega \subset \Pi$ достаточно “мало”, например, ω – центрально-симметричный тангенциальный фрагмент. Предположим, что $f(t, x) \equiv 0, g(t, x) \equiv 0$ в (1.26), (1.27). Показаем, что эта задача имеет смысл устойчиво слежимое (хаотическое) решение. А именно, рассмотрим разбиение $0 = t_0 < t_1 < \cdots < t_N = T$ временного интервала $(0, T)$, каждому элементу разбиения t_j совпадает произвольная пару $(v_j, \theta_j) \in V^1(\Pi) \times H^1(\Pi)$ и заданное числом $\varepsilon > 0$. Из теоремы 1.6 об априктервальной устойчивости системы Буссинеска следует, что существует такое управление $u \in U(\omega; 0, T)$, что решение $(v(t, x), \nabla p(t, x), \theta(t, x))$ задачи (1.26), (1.27), (1.24) удовлетворяет условию

$$(1.39) \quad \|v(t_j, \cdot) \cdot - v_j\|^2_{V^1(\Pi)} + \|	heta(t_j, \cdot) - \theta_j\|^2_{H^1(\Pi)} < \varepsilon \quad \forall j = 1, \ldots, N.$$

Отметим, что правая часть системы (1.26), (1.27) равна нулю при $(t, x) \in Q \setminus Q^\omega$, а решение этой системы может быть определено устойчиво слежимым на всем Q в смысле справедливости соотношений (1.39).

Аналогичным свойством обладает, конечно, и система Навье–Стокса.

3. Свойство обратимости. Пусть $(v_i(t, x), \nabla p_i(t, x))$, $(t, x) \in Q, i = 1, 2$, – два решения системы Навье–Стокса (1.5) (с единичной правой частью $f(t, x)$), например, с $f(t, x) \equiv 0$. Тогда для любого $\omega \subset \Pi$ и $(t_1, t_2) \subset (0, T)$ существует управление $u(t, x)$, сосредоточенное в $(t_1, t_2) \times \omega$, такое, что решение $(v_i, \nabla p_i)$ может быть перенесено в $(v_2, \nabla p_2)$. Последнее означает, что при указанном управлении и решении $(v, \nabla p)$ системы (1.12) обладает свойством:

$$(v(t, x), p(t, x)) \equiv (v_1(t, x), p_1(t, x)) \quad \text{при} \quad t \in (0, t_1),$$

$$(v(t, x), p(t, x)) \equiv (v_2(t, x), p_2(t, x)) \quad \text{при} \quad t \in (t_2, T).$$

Указанный способ называется свойством обратимости. В силу теоремы 1.2 система Навье–Стокса обладает свойством обратимости.

Аналогичным образом формулируется свойство обратимости и для системы Буссинеска. Справедливость свойства обратимости для системы Буссинеска вытекает из теоремы 1.4.

Свойство обратимости системы Навье–Стокса и Буссинеска представляет интерес в связи с некоторыми вопросами теории климата. (Чуть подробнее об этом см. в работах Ж.-Л. Лисона [93], [94], [96], Ж.-М. Корова, А. В. Фурсикова [14].)
§ 2. Карлемановские оценки

Доказательство разрешимости задачи точной управляемости линейной эволюционной системы часто сводится к изучению соответствующей задачи наблюдаемости для сопряженной системы. Этот путь реализован в § 2–4 данной работы.

Целью данного параграфа является доказательство некоторых оценок карлемановского типа для решений системы, сопряженной линеаризованной уравнениям Буссинеска.

2.1. Предварительные сведения. Как и раньше, П есть n-мерный тор, \(\omega \subset \Pi \) — подобласть с границей \(\partial \omega \in C^\infty \). Предполагается, что \(\omega' \in \omega \) и область \(\omega' \) — звездное множество относительно некоторой точки \(x_0 \in \omega' \).

Лемма 2.1. Существует функция \(\psi(x) \in C^2(\Pi) \) такая, что

\[
|\nabla \psi(x)| > 0 \quad \forall x \in \Pi \setminus \omega',
\]

где \(\omega' \subset \Pi \). Кроме того,

\[
\psi(x) \geq 1.
\]

Доказательство. Без ограничения общности можно считать, что \(x_0 = 0 \), а тор \(\Pi \) строится из куба \(K = \{x = (x_1, \ldots, x_n), -L/2 \leq x_j \leq L/2, j = 1, \ldots, n\} \) посредством отождествления противоположных граней. Положим

\[
\psi(x) = c + \sum_{j=1}^{n} \beta(x_j),
\]

где \(c > 0 \) — константа, \(\beta(x) \) — периодическая функция такая, что

\[
\beta(x) \in C^\infty(-L/2, L/2),
\]

\[
\beta(x) = \begin{cases} x, & x \in [\varepsilon, L/2]; \\ x + L, & x \in [-L/2, -\varepsilon]. \end{cases}
\]

где \(\varepsilon \) достаточно мало. Очевидно, для построенной функции \(\psi \) выполнено условие

(2.1) c

\[
\omega' = \{x = (x_1, \ldots, x_n), |x_j| \leq \varepsilon, j = 1, \ldots, n\}.
\]

Условие (2.2) легко обеспечивается, выбрав константу \(c > 0 \) достаточно большой.

Пусть \(\gamma(t) \in C^\infty(0, T) \) — функция, удовлетворяющая условию

(2.3)

\[
0 < \gamma(t) \leq T - t, \quad \gamma(t) = \begin{cases} t, & t \in [0, T/4]; \\ T - t, & t \in [3T/4, T]. \end{cases}
\]

Кроме того, предполагается, что \(\gamma(t) \) монотонно растет при \(t \in (0, T/2) \) и монотонно убывает при \(t \in (T/2, T) \). Введем функции

(2.4)

\[
\varphi = \varphi_\lambda(t, x) = \frac{e^{\lambda \psi(x)}}{\gamma(t)}, \quad \alpha \equiv \alpha_\lambda(t, x) = \frac{e^{\lambda^2 \|\psi\|_{C(\Pi)}} - e^{\lambda \psi(x)}}{\gamma(t)},
\]

где \(\lambda > 1 \) — параметр, а \(\psi(x), \gamma(t) \) — функции, введенные выше.

На шарике \(Q \) рассмотрим обратное уравнение теплопроводности

(2.5)

\[
\partial_t z(t, x) + \Delta z(t, x) = f(t, x).
\]
Лемма 2.2. Пусть $f \in L^2(Q)$ и $z \in L^2(Q)$ удовлетворяют уравнению (2.5). Тогда существует $\lambda > 1$ такое, что для любого $\lambda > \lambda$ найдется $s_0(\lambda)$ такое, что при всех $s \geq s_0(\lambda)$ справедлива карманныевская оценка

$$
\begin{align*}
(2.6) & \quad \int_Q \left((s\varphi)^{-1}|\partial_t z|^2 + (s\varphi)^{-1} \sum_{i,j=1}^n |\partial^2_{x_i x_j} z|^2 + s\varphi|\nablaz|^2 + (s\varphi)^3 z^2 \right) e^{-s\lambda} \, dx \, dt \\
& \leq c \left(\int_Q |f(t,x)|^2 e^{-s\lambda} \, dx \, dt + \int_{Q^*} s^3 \varphi^3 z^2 e^{-s\lambda} \, dx \, dt \right),
\end{align*}
$$

где $c > 0$ — константа, не зависящая от f, z и s.

Рассмотрим уравнение Пуассона на торе Π:

$$
\Delta z = f.
$$

Лемма 2.3. Пусть $z \in H^2(\Pi)$ и $f \in L^2(\Pi)$ удовлетворяют (2.7). Существует $\hat{\lambda} > 1$ такое, что при любом $\lambda > \hat{\lambda}$ найдется $s_0(\lambda)$ такое, что при всех $s \geq s_0(\lambda)$ справедлива оценка

$$
\begin{align*}
(2.8) & \quad \int_\Pi \left((s\varphi)^{-1} \sum_{i,j=1}^n |\partial^2_{x_i x_j} z|^2 + s\varphi|\nablaz|^2 + s^3 \varphi^3 |z|^2 \right) e^{-s\lambda} \, dx \\
& \leq c \left(\int_\Pi |f|^2 e^{-s\lambda} \, dx + \int_{\omega^*} s^3 \varphi^3 |z|^2 e^{-s\lambda} \, dx \right),
\end{align*}
$$

где константа $c > 0$ не зависит от f, z, s.

Лemma 2.2 и 2.3 доказаны в [10], [30], [38], [40], [41], [61] в случае ограниченной области. В случае торо Π доказательство проводится аналогично.

Замечание. Классы $\hat{\lambda}$, $s_0(\lambda)$ в леммах 2.2, 2.3 их максимумом, будем считать, что λ, $s_0(\lambda)$ в леммах 2.2, 2.3 один и тот же.

На цилиндре Q рассмотрим следующую систему уравнений:

$$
\begin{align*}
(2.9) & \quad N^*(y, \tau) = -\partial_y y - \Delta y - (\hat{v}, \nablay) + ((y, \nablav) + (\partial_y \hat{v})^* + \tau \nablav + \nablaz = f, \quad \hbox{div } y = 0, \\
(2.10) & \quad R^*(y, \tau) = -\partial_\tau \tau - \Delta \tau - (\nablav, \hat{v}) + (\hat{v}, y) = g, \\
(2.11) & \quad y(t, x)|_{t = -T} = y_T(x), \quad \tau(t, x)|_{t = -T} = \tau_T(x),
\end{align*}
$$

где \hat{v}, $\hat{\theta}$, f, g, y_T, τ_T — заданны, а (y, τ) — искомые функции и

$$
((y, \nablav) + (\partial_y \hat{v})^* = ((\partial_{x_1} \hat{v}, y), \ldots, (\partial_{x_n} \hat{v}, y)).
$$

Из приведенной ниже леммы вытекает корректность задачи (2.9)–(2.11).

1 Этая система формально сопряжена линейированной системе Буссинеска, приведенной ниже, в §3 (см. (3.1), (3.2)).
Точная управляемость уравнений Навье-Стокса и Буссинеска

Лемма 2.4. Пусть \(\theta \in L_{\infty}(0, T; V_{\infty}^1(\Pi)) \), \(\theta \in L_{\infty}(0, T; W_{\infty}^1(\Pi)) \). Тогда для любых исходных данных \(y_0 \in V^1(\Pi) \), \(\tau_0 \in H^1(\Pi) \), \(f \in L^2(Q)^n \), \(g \in L^2(Q) \) существует единственное решение \((y, \nabla p, \tau) \in V^{1,2}(Q) \times (L^2(Q))^n \times H^{1,2}(Q) \) задачи (2.9)–(2.11). Это решение удовлетворяет оценке

\[
\left\| y(t, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \tau(t, \cdot) \right\|_{L^2(Q)}^2 + 2 \int_0^T \left(\left\| \nabla y(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \nabla \tau(s, \cdot) \right\|_{L^2(Q)}^2 \right) ds \leq c \left(\left\| y_0 \right\|_{V^1(\Pi)}^2 + \left\| \tau_0 \right\|_{H^1(\Pi)}^2 + \left\| f \right\|_{L^2(Q)}^2 + \left\| g \right\|_{L^2(Q)}^2 \right),
\]

где константа \(c > 0 \) не зависит от \(y_0, \tau_0, f, g \).

Схема доказательства. Методы доказательства предложений такого типа хорошо известны (см., например, [77], [124]). Для полноты изложения напомним основные этапы доказательства. Получим, прежде всего, энергетическое неравенство для решения задачи (2.9)–(2.11). Умножая (2.9) скалярно в \((L^2(\Pi))^n \) на \(y \), а (2.10) – скалярно в \(L^2(\Pi) \) на \(\tau \), складывая полученные неравенства, интегрируя по частям, проводя простые преобразования и, в частности, интегрируя по времени от \(t \) до \(T \), будем иметь:

\[
\left\| y(t, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \tau(t, \cdot) \right\|_{L^2(Q)}^2 + 2 \int_0^T \left(\left\| \nabla y(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \nabla \tau(s, \cdot) \right\|_{L^2(Q)}^2 \right) ds \leq c_2 \int_0^T \left(\left\| y(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \tau(s, \cdot) \right\|_{L^2(Q)}^2 + \left\| f(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| g(s, \cdot) \right\|_{L^2(Q)}^2 \right) ds
\]

Применяя к этому неравенству лемму Гронвальда, получим энергетическое неравенство:

\[
\left\| y(t, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \tau(t, \cdot) \right\|_{L^2(Q)}^2 + 2 \int_0^T \left(\left\| \nabla y(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| \nabla \tau(s, \cdot) \right\|_{L^2(Q)}^2 \right) ds \leq c \left(\left\| y_0 \right\|_{V^1(\Pi)}^2 + \left\| \tau_0 \right\|_{L^2(Q)}^2 + \int_0^T \left(\left\| f(s, \cdot) \right\|_{V^1(\Pi)}^2 + \left\| g(s, \cdot) \right\|_{L^2(Q)}^2 \right) ds \right).
\]

Проектируя уравнение (2.9) на однородные векторные поля, получим с помощью метода Галеркина, основываясь на неравенстве (2.13), существование и единственность решения

\[
(y, \tau) \in \left(L^\infty(0, T; V^0(\Pi)) \cap L^2(0, T; V^1(\Pi)) \right) \times \left(L^\infty(0, T; L^2(\Pi)) \cap L^2(0, T; H^1(\Pi)) \right).
\]

Пусть \(P: (L^2(\Pi))^n \rightarrow V^0(\Pi) \) – сортопроектор. Используя линейную формулу для \(P \), справедливую в случае тела (см. [126]), легко видеть, что \(P\Delta = \Delta P \) и сужение \(P \) на \((H^k(\Pi))^n \) действует на \(V^k(\Pi) \), \(P|_{(H^k(\Pi))^n} : (H^k(\Pi))^n \rightarrow V^k(\Pi) \). Поэтому проекция уравнения (2.9) на \(V^0(\Pi) \) имеет вид

\[
-\partial_t u - \Delta y = P \left[f + (\hat{u}, \nabla)] y + ((u, \nabla)\hat{u}^* + \tau \nabla \hat{\theta}) \right] \equiv q,
\]
причем, очевидно, \(q \in L_2(0, T; V^0(\Pi)) \). Применим к задаче (2.14), (2.11) с правой частью \(q \) теорему о гладкости решений задачи Стокса, получим, что \(y \in V^{1,2}(Q) \) и

\[
\| y \|_{V^{1,2}(Q)}^2 \leq c \left(\| y \|_{L^2(0, T; V^0(\Pi))}^2 + \| q \|_{L^2(0, T; V^0(\Pi))}^2 \right) \\
\leq c_1 \left(\| y \|_{L^2(0, T; V^1(\Pi))}^2 + \| y \|_{L^2(0, T; V^2(\Pi))}^2 \right).
\]

Из (2.15), (2.13) следует требуемая оценка для \(\| y \|_{V^{1,2}(Q)} \). Оценка для \(\| y \|_{H^{1,2}(Q)} \) получается аналогично. Выражая \(\nabla p \) из уравнения (2.9), получим оценку для \(\| \nabla p \|_{L^2(Q)} \).}

2.2. Каллемановские оценки решений системы (2.9), (2.10)

Прежде всего, получим дополнительную информацию о гладкости давления \(p \) из (2.9); для этого нам понадобится следующее: в силу 2.4, задающих условия гладкости \(\tilde{v}, \tilde{\theta} \) и \(f \). Допустим, что \(\text{div} f \in L_2(Q) \) и

\[
\text{div} f \in L_2(Q).
\]

Применим оператор \(\text{div} \) к обеим частям (2.9) и учитывая бездивергентность функции \(y \), получим равенство

\[
\Delta p = \text{div} (\{\tilde{r}, \nabla\} y - [(y, \nabla\tilde{v})]^* - \tau \nabla \tilde{\theta} + f).
\]

В силу (2.16) и включений \(y \in L_2(0, T; V^2(\Pi)) \), \(\tau \in L_2(0, T; H^2(\Pi)) \), вытекающих из леммы 2.4, будем иметь:

\[
\text{div} (\{\tilde{r}, \nabla\} y - [(y, \nabla\tilde{v})]^* - \tau \nabla \tilde{\theta}) \in L_2(Q).
\]

Поскольку из (2.17) и теоремы вложения Соболева следует, что

\[
p \in L_2(0, T; H^2(\Pi)) \subset L_2(0, T; C(\Pi)),
\]

и, значит, значение функции \(p \) в точке \(x_0 \), т.е. \(p(t, x_0) \), определено как функция из \(L_2(0, T) \). Чтобы однозначно определить функцию \(p \) в (2.9), положим

\[
p(t, x_0) = 0,
\]

где \(x_0 \in \omega' \), а \(\omega' \) — звездная относительно \(x_0 \) подобласть из леммы 2.1. Справедливо
ТОЧНАЯ УПРАВЛЯЕМОСТЬ УРАВНЕНИЙ НАВЬЕ–СТОКСА И БУССИНЕСКА

Теорема 2.1. Пусть \(\hat{v}, \hat{\theta} \) удовлетворяют (2.16),

\[
 f \in (L_2(Q))^n, \quad \text{div} \, f \in L_2(Q), \quad g \in L_2(Q).
\]

Существует \(\lambda > 1 \) такое, что при любом \(\lambda > \hat{\lambda} \) находитя \(s_0(\lambda) \) такое, что при всех \(s \geq s_0(\lambda) \) решение задачи (2.9)–(2.11) удовлетворяет оценке

\[
 I(y, \tau, s) \equiv \int_Q \left((\varphi s)^{-1} (|\partial y|^2 + |\partial \tau|^2) + (s \varphi)^{-1} \sum_{i,j=1}^n \left(|\partial^2_{xyz} y|^2 + |\partial^2_{xyz} \tau|^2 \right)
 + s \varphi(|\nabla y|^2 + |\nabla \tau|^2) + s^3 \varphi^3(|y|^2 + |\tau|^2) \right) e^{-s\alpha \lambda} \, dx \, dt
 \leq c \int_{Q^*} \left(|f(t, x)|^2 + |\text{div} \, f|^2 + |g(t, x)|^2 \right) e^{-s\alpha \lambda} \, dx \, dt
 + \int_{Q^*} s^3 \varphi^3(|y|^2 + |\tau|^2 + |p|^2) e^{-s\alpha \lambda} \, dx \, dt,
\]

где \(c > 0 \) не зависит от \(f, g, s \).

Доказательство. Положим

\[
 \begin{align*}
 \tilde{f}(t, x) &= f(t, x) + (\hat{v}, \nabla) y - ((y, \nabla) \hat{v})^* - \tau \nabla \hat{\theta}, \\
 \tilde{g}(t, x) &= g(t, x) - (\hat{v}, y) + (\nabla, \hat{v}), \\
 q(t, x) &= \tilde{f} - \nabla p.
 \end{align*}
\]

Из (2.9), (2.23) следует, что \(\text{div} \, q = 0 \). Используя обозначения (2.21)–(2.23), уравнения (2.9), (2.10) можно переписать в виде

\[
 -\frac{\partial y}{\partial y} - \Delta y = q, \quad \text{div} \, y = 0; \quad -\frac{\partial \tau}{\partial y} - \Delta \tau = \tilde{g}.
\]

Примения к каждому из уравнений (2.24) лемму 2.2 и складывая полученные оценки, будем иметь неравенство

\[
 I(y, \tau, s) \leq c \left(\int_Q (|y|^2 + |\tilde{g}|^2) e^{-s\alpha \lambda} \, dx \, dt + \int_{Q^*} s^3 \varphi^3(|y|^2 + |\tau|^2) e^{-s\alpha \lambda} \, dx \, dt \right),
\]

где \(I(y, \tau, s) \) — левая часть неравенства (2.20), а \(c \) не зависит от \(q, \tilde{g}, s > s_0(\lambda) \).

Используя определение (2.21)–(2.23) функций \(q \) и \(\tilde{g} \), оценённый первый интеграл в правой части (2.25):

\[
 \int_Q (|y|^2 + |\tilde{g}|^2) e^{-s\alpha \lambda} \, dx \, dt
 \leq c_1 \int_Q (|f|^2 + |g|^2 + |
 \nabla y|^2 + |
 \nabla \tau|^2 + |y|^2 + |\tau|^2) e^{-s\alpha \lambda} \, dx \, dt.
\]
Из (2.25), (2.26), увеличивая в случае необходимости \(s \), получим неравенство:

\[
(2.27) \quad I(y, \tau, s) \leq c_2 \left(\int_Q \left(|f|^2 + |g|^2 + |\nabla p|^2 e^{-s\alpha_\lambda} \right) dx \, dt \\
+ \int_{Q^c} s^3 \varphi^3 \left(|y|^2 + |\tau|^2 e^{-s\alpha_\lambda} \right) dx \, dt \right).
\]

Применяя лемму 2.3 к уравнению (2.17), будем иметь оценку:

\[
(2.28) \quad \int_Q \left((s\varphi)^{-1} \sum_{i,j=1}^n |\partial_{x_i x_j} p|^2 + s\varphi |\nabla p|^2 + s^3 \varphi^3 |p|^2 \right) e^{-s\alpha_\lambda} dx \, dt \\
\leq c \left(\int_Q |\text{div} \left(\left(\tilde{\nu}, \tilde{\theta} \right) y - \left(y, \nabla \tilde{\theta} \right) \right) - \tau \nabla \tilde{\theta} + f \right)^2 e^{-s\alpha_\lambda} dx \, dt \\
+ \int_{Q^c} s^3 \varphi^3 |p|^2 e^{-s\alpha_\lambda} dx \, dt \right) \\
\leq c_1 \left(\int_Q \left(|\nabla y|^2 + |\nabla \tau|^2 + |y|^2 + |\tau|^2 + |\text{div} \, f|^2 \right) e^{-s\alpha_\lambda} dx \, dt \\
+ \int_{Q^c} s^3 \varphi^3 |p|^2 e^{-s\alpha_\lambda} dx \, dt \right).
\]

Оценивая \(\nabla p \) из (2.27) с помощью (2.28) и увеличивая \(s \) в случае необходимости, получим оценку (2.20).

Следствие 2.1. Пусть \(\left(\tilde{\nu}, \tilde{\theta} \right) \) удовлетворяет (2.16) и \((y, \tau) \in L_2(0, T; V^1(\Pi)) \times L_2^2(0, T; H^1(\Pi)) \) решение задачи (2.9)–(2.11) со \(f \equiv 0, g \equiv 0 \) такое, что \((y, \tau)|_{Q^c} \equiv 0 \). Тогда

\[
(y, \tau) \equiv 0 \quad \text{на} \quad Q.
\]

Доказательство. Действительно, в силу (2.9) \(|\nabla p|_{Q^c} \equiv 0 \). Следовательно,

\[
p(t, x) = p(t) \quad \forall (t, x) \in Q^c,
\]

и, согласно (2.18), \(p \big|_{Q^c} \equiv 0 \). Таким образом, наше утверждение следует из (2.20).

Наша цель теперь – избавиться в оценке (2.20) от члена \(|p|^2 \) в правой части. Для этого мы используем следующее свойство функции \(\alpha_\lambda \), которое в силу второго соотношения в (2.4) и (2.2) справедливо при \(\lambda \geq \lambda_0 \), где \(\lambda_0 \) достаточно велико:

\[
(2.29) \quad \text{Пусть} \quad \tilde{\alpha}_\lambda(t) = \max_{x \in \Omega} \alpha_\lambda(t, x), \quad \tilde{\alpha}(t) = \min_{x \in \Omega} \alpha_\lambda(t, x), \quad \text{тогда} \quad \tilde{\alpha}(t) < \frac{10}{9} \alpha(t).
\]
Теорема 2.2. Пусть \(\tilde{\omega}, \tilde{\theta}, f, g \) удовлетворяют (2.16), (2.19). Пусть \(\omega' \in \omega \subseteq \Pi \), причем \(\partial \omega \in C_\infty \), а \(\omega' \) — множество, жёсткое относительно точки \(x_0 \) из (2.18). Тогда существует \(\lambda > 1 \) такое, что для любого \(\lambda > \lambda \) найдётся \(\tilde{\omega}_0(\lambda) \) такое, что при всех \(s \geq \tilde{\omega}_0(\lambda) \) решение задачи (2.9)–(2.11) удовлетворяет оценке

\[
(2.30) \quad I(y, \tau, s) \leq c \left(\int_0^T (|f|^2 + \|\text{div } f|^2 + |g|^2) e^{-\alpha \lambda} \, dx \, dt
+ \int_0^T e^{-9\alpha \lambda/10} \left(\|f(t, \cdot)|^2_{H^{-2}(\omega)} \right)^n + \|\text{div } f(t, \cdot)|^2_{H^{-1}(\omega)} \right) \, dt
+ \int_{Q'} (|y|^2 + |\tau|^2 + |\partial_y y|^2) e^{-9\alpha \lambda/10} \, dx \, dt \right),
\]

где \(c > 0 \) не зависит от \(f, g \), а \(I(y, \tau, s) \) определено в (2.20).

Доказательство. Выразим \(\nabla p \) из уравнения (2.9):

\[
(2.31) \quad \nabla p = f + \partial y + \Delta y + (\tilde{\omega}, \nabla y) - (y, \nabla \tilde{\omega})^* - \tau \nabla \tilde{\theta} \equiv f_1.
\]

Применим оператор \(\text{div} \) к обеим частям этого равенства, получим:

\[
(2.32) \quad \Delta p = \sum_{i,k-1} \frac{\partial^2 y}{\partial x_i \partial x_k} \frac{\partial y_k}{\partial x_i} - \sum_{i=1}^n \left(\frac{\partial^2 \tilde{y}}{\partial x_i \partial x_k} \right) \frac{\partial y_k}{\partial x_i}
- \sum_{i,k-1} \frac{\partial y_k}{\partial x_i} \frac{\partial^2 y}{\partial x_i} - \tau \Delta \tilde{\theta} - (\nabla \tilde{\omega}, \nabla \tilde{\omega}) + \text{div } f \equiv f_2,
\]

причем последнее равенство в (2.32) является определением функции \(f_2 \). Представим \(p \) в виде суммы

\[
(2.33) \quad p(t, x) = p_1(t, x) + p_2(t, x), \quad t \in (0, T), \quad x \in \omega,
\]

где

\[
(2.34) \quad \Delta p_1(t, x) = f_1(t, x), \quad x \in \omega, \quad p_1|_{\partial \omega} = 0,
(2.35) \quad \Delta p_2(t, x) = 0, \quad x \in \omega, \quad p_2|_{\partial \omega} = p|_{\partial \omega}.
\]

Как показано выше (см. (2.18)), \(p|_{\partial \omega} \) корректно определено при почти всех \(t \in (0, T) \). Применим к (2.34) оценку решений эллиптических краевых задач и используя определение (2.32) правой части \(f_2 \) и (2.16), получим

\[
(2.36) \quad \|\nabla p_1(t, \cdot)|^2_{L^2(\omega)} \leq c \|f_2(t, \cdot)|^2_{H^{-1}(\omega)}
\leq c_1 \left(\|y(t, \cdot)|^2_{L^2(\omega)} + \|\tau(t, \cdot)|^2_{L^2(\omega)} + \|\text{div } f(t, \cdot)|^2_{H^{-1}(\omega)} \right).
\]

В силу (2.31), (2.33)

\[
\nabla p_2 = \nabla p - \nabla p_1 = f_1 - \nabla p_1
\]
и поэтому, учитывая (2.36), (2.16), будем иметь

\((2.37) \quad \|\nabla p_2(t, \cdot)\|^2_{H^{-2}(\omega)} \leq c_2 (\|u(t, \cdot)\|^2_{L_2(\omega)})^n + \|\tau(t, \cdot)\|_{L_2(\omega)}^2 + \|\partial_t u(t, \cdot)\|^2_{L_2(\omega)})^n + \|f(t, \cdot)\|^2_{H^{-2}(\omega)})^n + \|\nabla f(t, \cdot)\|^2_{H^{-1}(\omega)}.

Дифференцируя (2.35), имеем

\[\Delta \nabla p_2(t, x) = 0, \quad x \in \omega; \]

к \(\nabla p_2\) применимо утверждение следующей леммы, которую легко вывести, например, с помощью техники решения функций из результатов книги Дж. Л. Львова, Э. Малышевского [90].

Лемма 2.5. Пусть \(w(x) \in H^{-2}(\omega) - \) гармоническая функция, т.е. \(\Delta w(x) = 0, x \in \omega, w' \in \omega. \) Тогда

\((2.38) \quad \|w\|_{L_2(\omega')} \leq c\|w\|_{H^{-2}(\omega)}, \]

где \(c\) не зависит от \(w.\)

Применяя к \(\nabla p_2\) оценки (2.38), (2.37), получим

\((2.39) \quad \|\nabla p_2(t, \cdot)\|^2_{(L_2(\omega'))} \leq c (\|u(t, \cdot)\|^2_{L_2(\omega)})^n + \|\tau(t, \cdot)\|_{L_2(\omega)}^2 + \|\partial_t u(t, \cdot)\|^2_{L_2(\omega)})^n + \|f(t, \cdot)\|^2_{H^{-2}(\omega)})^n + \|\nabla f(t, \cdot)\|^2_{H^{-1}(\omega)}.

Так как по предположению множество \(\omega'\) является звездным относительно точки \(x_0\) из (2.18), то в силу (2.18), (2.33), (2.36), (2.39)

\[\|p(t, \cdot)\|^2_{L_2(\omega')} \leq c (\|\nabla p\|^2_{L_2(\omega)})^n \leq c_1 (\|u(t, \cdot)\|^2_{L_2(\omega)})^n + \|\tau(t, \cdot)\|_{L_2(\omega)}^2 + \|\partial_t u(t, \cdot)\|^2_{L_2(\omega)})^n + \|f(t, \cdot)\|^2_{H^{-2}(\omega)})^n + \|\nabla f(t, \cdot)\|^2_{H^{-1}(\omega)}.

Применим эту оценку к правой части (2.20) и учитывая (2.29), будем иметь:

\[I(y, \tau, s) \leq c \left(\int_0^T e^{-9\alpha\lambda/10} \left(\int_{\omega}(y^2 + |\tau|^2 + |p|^2) \, dx + \|f(t, \cdot)\|^2_{H^{-2}(\omega)})^n \right. \right. \]
\[+ \|\nabla f(t, \cdot)\|^2_{H^{-1}(\omega)} \right) \right) \left(\int_{Q} (|f|^2 + |\nabla f|^2 + |g|^2) e^{-\alpha\lambda} \, dx \, dt \right) \]
\[\right) \leq c \left(\int_{Q} (|g|^2 + |\tau|^2 + |\partial_t y|^2 + |f|^2) e^{-9\alpha\lambda/10} \, dx \, dt \right. \]
\[+ \int_0^T e^{-9\alpha\lambda/10} (\|f(t, \cdot)\|^2_{H^{-2}(\omega)})^n + \|\nabla f(t, \cdot)\|^2_{H^{-1}(\omega)} \right) \right) \]
\[+ \int_{Q} (|f|^2 + |\nabla f|^2 + |g|^2) e^{-\alpha\lambda} \, dx \, dt \right). \]

Это доказывает (2.30).
2.3. Окончательные оценки. Избравшимся теперь от члена ∂_{xy} в правой части неравенства (2.30).

Теорема 2.3. Пусть $f, g, \tilde{v}, \tilde{\theta}$ удовлетворяют (2.19), (2.16) и, кроме того,

$$\partial_{xy} \tilde{v} \in L_{\infty}(0, T; V_{\infty}^2(\Pi)), \quad \partial_{xy} \tilde{\theta} \in L_{\infty}(0, T; \dot{W}^2_{\infty}(\Pi)).$$

Предполагается, что для множеств ω', ω выполнены условия теоремы 2.2. Тогда существует такое $\tilde{\lambda} \geq 1$, что при любом $\lambda > \tilde{\lambda}$ найдётся $s_0(\lambda)$ такое, что при всех $s \geq s_0(\lambda)$ решение задачи (2.9)–(2.11) удовлетворяет оценке

$$\left(\int_Q \frac{1}{s_0} \left(|y(t, x)|^2 + |\tau(t, x)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt\right)$$

$$\leq c \left(\int_Q \left((f(t, x)|^2 + \left| \text{div} f \right|^2 + |g(t, x)|^2 e^{-s_0 \lambda(t, x)} \right) \, dx \, dt \right.$$

$$+ \int_{Q_{\omega'}} \left(|f(t, x)|^2 + |y(t, x)|^2 + |\tau(t, x)|^2 \right) e^{-9s_0 \lambda(t) / 10} \, dx \, dt$$

$$+ \|y(T/2, \cdot)\|_{V^2(\Pi)}^2 + \|\tau(T/2, \cdot)\|_{W^2(\Pi)}^2,$$

где $c > 0$ не зависит от f, g, y, τ, s.

Доказательство. Введем функции

$$\tilde{y}(t, x) = \int_{T/2}^t y(s, x) \, ds, \quad \tau(t, x) = \int_{T/2}^t \tau(s, x) \, ds, \quad \tilde{p}(t, x) = \int_{T/2}^t p(s, x) \, ds,$$

$$\tilde{f}(t, x) = \int_{T/2}^t f(s, x) \, ds, \quad \tilde{g}(t, x) = \int_{T/2}^t g(s, x) \, ds.$$

(2.42)

Интегрируя уравнения (2.9), (2.10) по времени от $T/2$ до t, получим, что функции (2.42) удовлетворяют соотношениям:

$$-\partial_{t} \tilde{y} - \Delta \tilde{y} + \nabla \tilde{p} = \tilde{f} - y(T/2, x)$$

$$+ \int_{T/2}^t \left((\tilde{v}(s, x), \nabla) y(s, x) - (y, \nabla) \tilde{v}(s, x) - \tau(s, x) \nabla \tilde{\theta}(s, x) \right) \, ds = 0,$$

(2.43)

$$-\partial_{t} \tilde{\tau} - \Delta \tilde{\tau} + \tilde{\nabla} \tilde{y} = \tilde{g} + \int_{T/2}^t \left(\nabla \tau(s, x), \tilde{v}(s, x) \right) \, ds - \tau(T/2, x).$$

(2.44)

Преобразуем интегралы в уравнениях (2.43), (2.44). Интегрируя по частям, имеем:

$$\int_{T/2}^t \left(\nabla \tau(s, x), \tilde{v}(s, x) \right) \, ds = \left(\nabla \tau(t, x), \tilde{v}(t, x) \right) - \int_{T/2}^t \left(\nabla \tau(s, x), \partial_{s} \tilde{v}(s, x) \right) \, ds;$$

$$\int_{T/2}^t \left(\nabla \tau(s, x), \tilde{v}(s, x) \right) \, ds = \left(\nabla \tau(t, x), \tilde{v}(t, x) \right) - \int_{T/2}^t \left(\nabla \tau(s, x), \partial_{s} \tilde{v}(s, x) \right) \, ds;$$
точно так же доказываются равенства

\[\int_{T/2}^{t} (\vec{\nu}, \nabla) \gamma ds = \left(\vec{\nu}(t, x), \nabla \right) \gamma(t, x) - \int_{T/2}^{t} (\partial_r \vec{\nu}(s, x), \nabla) \gamma ds, \]

\[\int_{T/2}^{t} (y, \nabla) \vec{\nu}^*) ds = \left(\vec{\nu}(t, x), \nabla \right) \vec{\nu}(t, x)^* - \int_{T/2}^{t} (\vec{\nu}, \nabla \vec{\nu})^* ds, \]

\[\int_{T/2}^{t} \tau \nabla \theta ds = \tau(t, x) \nabla \theta(t, x) - \int_{T/2}^{t} \tau \partial_r \nabla \theta ds. \]

Подставляя эти равенства в (2.43), (2.44), получим, что \(\vec{y}, \tau, \rho \) удовлетворяют уравнениям (2.9), (2.10), в которых правые части \(f, g \) заменены, соответственно, на

(2.45) \[F = \vec{f} - y(T/2, x) - \int_{T/2}^{t} ((\partial_r \vec{\nu}, \nabla) \gamma - (\vec{\nu}, \nabla \partial_r \vec{\nu})^* - \tau \nabla \theta) ds. \]

(2.46) \[G = \vec{g} - \int_{T/2}^{t} (\nabla \tau, \partial_r \vec{\nu}) ds - \tau(T/2, x). \]

Приложим к этим уравнениям теорему 2.2, получим следующий аналог оценки (2.30):

(2.47) \[I(\vec{y}, \tau, s) \leq c \left(\int_{Q} (|F(t, x)|^2 + |\text{div} \ F(t, x)|^2 + |G(t, x)|^2) e^{-s \alpha \chi(t, x)} dx dt \right. \]

\[+ \int_{0}^{T} e^{-r \alpha \chi(t, x)} (|F(t, \cdot)|^2_{L^2(\omega)} + |G(t, \cdot)|^2_{L^2(\omega)}) dt \]

\[+ \left. \int_{Q} (|\vec{y}|^2 + |\vec{\nu}|^2 + |\vec{u}|^2) e^{-r \alpha \chi(t, x)} dx dt \right). \]

Для функции \(h(t, x) \) положим

\[\vec{h}(t, x) = \int_{T/2}^{t} h(\xi, x) d\xi. \]

Докажем неравенство

(2.48) \[\int_{Q} |\vec{h}(t, x)|^2 e^{-s \alpha \chi(t, x)} dx dt \leq c \int_{Q} |h(t, x)|^2 e^{-s \alpha \chi(t, x)} dx dt, \]

где \(c \) не зависит от \(h \) и \(s \). Применя неравенство Коши–Буняковского, а затем теорему Фубини, получим:

\[\int_{Q} |\vec{h}(t, x)|^2 e^{-s \alpha \chi(t, x)} dx dt \leq c \left(\int_{T/2}^{t} \int_{t}^{T/2} |h(\xi, x)|^2 d\xi e^{-s \alpha \chi(t, x)} dx dt \right. \]

\[+ \int_{T/2}^{t} \int_{t}^{T/2} |h(\xi, x)|^2 d\xi e^{-s \alpha \chi(t, x)} dx dt \]

\[= c \left(\int_{T/2}^{t} \int_{t}^{T/2} |h(\xi, x)|^2 d\xi e^{-s \alpha \chi(t, x)} dx dt \right. \]

\[+ \int_{T/2}^{t} \int_{t}^{T/2} |h(\xi, x)|^2 \left(\int_{\xi}^{T} e^{-s \alpha \chi(t, x)} dt \right) dx d\xi \]

\[\leq c_1 \int_{Q} |h(t, x)|^2 e^{-s \alpha \chi(t, x)} dx ds, \]
точная управляемость уравнений навье–стокса и буассинека

отличение последующий неравенств вытекает из определения (2.4) функции α_3 и того, что функция $\gamma(t)$ монотонно растет при $t \in (0, T/2)$ и монотонно убывает при $t \in (T/2, T)$. Итак, (2.48) доказано.

В силу (2.48)

$$(2.49) \quad \int_Q (|F|^2 + |\text{div} F|^2) e^{-s \alpha_3} \, dx \, dt \leq c \left(\int_Q |f|^2 e^{-s \alpha_3} \, dx \, dt
ight)$$

$$+ \int_{\mathbb{R}^3} g(T/2, x)^2 e^{-s \alpha_3(T/2, x)} \, dx + \int_Q (|\nabla \bar{y}|^2 + |\bar{y}|^2 + \tau^2) e^{-s \alpha_3} \, dx \, dt,$$

$$(2.50) \quad \int_Q |G|^2 e^{-s \alpha_3} \, dx \, dt \leq c \left(\int_Q |g|^2 e^{-s \alpha_3} \, dx \, dt
ight)$$

$$+ \int_{\mathbb{R}^3} \bar{\tau}(T/2, x)^2 e^{-s \alpha_3(T/2, x)} \, dx + \int_Q |\nabla \bar{\tau}|^2 e^{-s \alpha_3} \, dx \, dt,$$

gде постоянная c не зависит от s.

В силу близким интегралы векторных полей $\partial_i \bar{\nu}$

$$\int_T \partial_i \bar{\nu} \cdot \nabla \bar{y} \, ds = \sum_{j=1}^n \int_T \partial_j \bar{\nu} \, ds.$$

Поэтому из (2.45) следует, что

$$(2.51) \quad \|F(t, \cdot)\|^2_{L^2(\mathbb{R}^3)} + \|\text{div} F(t, \cdot)\|^2_{L^2(\mathbb{R}^3)} \leq c \left(\int_{\mathbb{R}^3} |f(t, \cdot)|^2 \, dx \, dt
ight)$$

$$+ \int_{\mathbb{R}^3} (|\bar{y}(s, \cdot)|^2 + |\bar{x}(s, \cdot)|^2) \, ds + \|g(T/2, \cdot)\|^2_{L^2(\mathbb{R}^3)}.$$

Оценим правую часть неравенства (2.47) с помощью (2.49)–(2.51), будем иметь

$$(2.52) \quad I(\bar{y}, \bar{\tau}, s) \leq c \left(\int_Q (|f(t, x)|^2 + |\text{div} f(t, x)|^2 + |g(t, x)|^2 + |\nabla \bar{y}(t, x)|^2 + |\bar{y}(t, x)|^2$$

$$+ |\nabla \bar{\tau}(t, x)|^2 + |\bar{\tau}(t, x)|^2) e^{-s \alpha_3(t, x)} \, dx \, dt + \|u(T/2, \cdot)\|^2_{H^1(\mathbb{R}^3)}$$

$$+ \|\bar{\tau}(T/2, \cdot)\|^2_{H^1(\mathbb{R}^3)} + \int_{\mathbb{R}^3} (|\bar{y}|^2 + |\bar{\tau}|^2 + |\partial_i \bar{y}|^2) e^{-9 \alpha_3(t)/10} \, dx \, dt),$$

gде c не зависит от s. Вспоминая определение (2.20) функционала $I(\bar{y}, \bar{\tau}, s)$ и перенос влево члены с $|\nabla \bar{y}(t, x)|$, $|\bar{y}(t, x)|$, $|\nabla \bar{\tau}(t, x)|$, $|\bar{\tau}(t, x)|$ из интеграла по Q в правой части, получим, увеличивая в случае необходимости $q_0(\lambda)$:

$$I(\bar{y}, \bar{\tau}, s) \leq C_1 \left(\int_Q (|f(t, x)|^2 + |\text{div} f(t, x)| + |g(t, x)|^2) e^{-s \alpha_3(t, x)} \, dx \, dt$$

$$+ \|u(T/2, \cdot)\|^2_{H^1(\mathbb{R}^3)} + \|\bar{\tau}(T/2, \cdot)\|^2_{H^1(\mathbb{R}^3)}$$

$$+ \int_{\mathbb{R}^3} (|\bar{y}|^2 + |\bar{\tau}|^2 + |\partial_i \bar{y}|^2) e^{-9 \alpha_3(t)/10} \, dx \, dt).$$

Замена в интеграле по Q^ω векторное поле $\partial_i \bar{y}$ на \bar{y} и оценивая члены с $|\bar{y}|$ и $|\bar{\tau}|$ с помощью очевидного аналого неравенства (2.48), получим (2.44).

Освободимся теперь от членов с $u(T/2, \cdot)$, $\bar{\tau}(T/2, \cdot)$ в правой части (2.41).
Теорема 2.4. Пусть выполнены условия теоремы 2.3 и \(\lambda, s_0(\lambda) \) определены в теореме 2.3. Тогда решение задачи (2.9)--(2.11) удовлетворяет оценке
\[
\begin{align*}
(2.53) \quad
\int_Q \frac{1}{s_0} \left(|g(t, x)|^2 + |r(t, x)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt \\
+ \|g(T/2, \cdot)^2\|_{\mathcal{V}_0(\Pi)} + \|r(T/2, \cdot)^2\|_{\mathcal{H}_0(\Pi)} \\
\leq c \left(\int_Q \left((f(t, x))^2 + |\text{div} f(t, x)|^2 + |g(t, x)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt \\
+ \int_{Q^c} \left(|r(t, x)|^2 + |f(t, x)|^2 + |g(t, x)|^2 \right) e^{-9s_0 \lambda(t)/10} \, dx \, dt \right) \forall s \geq s_0(\lambda),
\end{align*}
\]
где c не зависит от f, g.

Доказательство. Пусть \(\rho(t) \in C^\infty(T/2, 3T/4), \rho(T/2) = 1, \rho(3T/4) = 0 \) и \((y, p, \tau) \) — решение системы (2.9), (2.10). Тогда, очевидно, тройка \((\rho_y, \rho_p, \rho_\tau) \) удовлетворяет системе (2.9), (2.10) на \((t, x) \in (T/2, 3T/4) \times \Pi \), в которой правые части f, g заменены на \(\rho_f + \rho \partial_t \rho \) и \(\rho_p + \rho \partial_\tau \rho \) соответственно. Кроме того, при \(t = 3T/4 \) \(\rho_y \) и \(\rho_\tau \) удовлетворяют нулевым начальным условиям. Поэтому в силу леммы 2.4 и теоремы о слабых справедливо неравенство:
\[
(2.54) \quad \|g(T/2, \cdot)^2\|_{\mathcal{H}_1(\Pi)} + \|r(T/2, \cdot)^2\|_{\mathcal{H}_0(\Pi)} \\
\leq c \left(\int_{T/2}^{3T/4} \int_{\Pi} \left((f(t)^2 + |g(t)|^2) + \frac{1}{s_0} \left(|y(t)|^2 + |\tau(t)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt \right),
\end{align*}
\]
причем последнее из неравенств справедливо потому, что при \(t \in (T/2, 3T/4) \) функции \(s_0 \) и \(e^{-s_0 \lambda(t, x)} \) ограничены сверху и в силу положительными константами, зависящими от \(s, \lambda \), но не зависящими от \(t, x \). Умножим обе части (2.54) на \((2c_3)^{-1} \) и сложим с (2.41). Перенесем в полученное неравенство член
\[
\frac{1}{2} \int_{T/2}^{3T/4} \int_{\Pi} \frac{1}{s_0} \left(|y(t)|^2 + |\tau(t)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt
\]
из правой в левую часть, будем иметь оценку
\[
(2.55) \quad \int_Q \frac{1}{s_0} \left(|y(t)|^2 + |\tau(t)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt + \|g(T/2, \cdot)^2\|_{\mathcal{H}_1(\Pi)} + \|r(T/2, \cdot)^2\|_{\mathcal{H}_0(\Pi)} \\
\leq c_1 \left(\int_{Q} \left((f(t)^2 + |\text{div} f(t)|^2 + |g(t)|^2 \right) e^{-s_0 \lambda(t, x)} \, dx \, dt \\
+ \int_{Q^c} \left((f(t)^2 + |g(t)|^2 + |\tau(t)|^2 \right) e^{-9s_0 \lambda(t)/10} \, dx \, dt \\
+ \|g(T/2, \cdot)^2\|_{\mathcal{H}_1(\Pi)} + \|r(T/2, \cdot)^2\|_{\mathcal{H}_0(\Pi)} \right).
\]
Покажем, что из (2.55) следует неравенство (2.53). Допустим противное. Тогда существует последовательность наборов \((y_k, \tau_k, f_k, g_k)\), которые при каждом \(k\) удовлетворяют системе (2.9), (2.10), и согласно доказанному выше для каждого набора справедлива оценка (2.55). При этом при подстановке \((y_k, \tau_k, f_k, g_k)\) в (2.53) левая часть этого неравенства равна 1, а правая часть стремится к нулю при \(k \to \infty\).

Поскольку, переходя, если нужно, к подпоследовательности, можно считать, что

\[
(2.56) \quad (y_k, \tau_k) \to (\tilde{y}, \tilde{\tau}) \text{ слабо в пространстве } L^2(Q, e^{-\alpha \lambda}/(s \varphi))^{n+1},
\]

\[
(2.57) \quad (f_k, g_k) \to (\tilde{f}, \tilde{g}) \equiv (0, 0) \text{ в } L^2(Q, e^{-\alpha \lambda})^{n+1},
\]

\[
(2.58) \quad \int_{Q^c} (|y_k|^2 + |\tau_k|^2 + |\tilde{f}_k|^2) e^{-\alpha \lambda(t)} \frac{1}{10} \, dx \, dt \to 0 \equiv \int_{Q^c} (|\tilde{y}|^2 + |\tilde{\tau}|^2 + |\tilde{f}|^2) e^{-\alpha \lambda(t, x)} \frac{1}{10} \, dx \, dt,
\]

\[
(2.59) \quad (y_k(T/2, \cdot), \tau_k(T/2, \cdot)) \to (\tilde{y}(T/2, \cdot), \tilde{\tau}(T/2, \cdot)) \text{ слабо в } V^1(\Pi) \times H^1(\Pi),
\]

и, следовательно, в силу компактности вложения \(V^1(\Pi) \times H^1(\Pi) \subseteq V^0(\Pi) \times H^0(\Pi)\)

\[
(2.60) \quad (y_k(T/2, \cdot), \tau_k(T/2, \cdot)) \to (\tilde{y}(T/2, \cdot), \tilde{\tau}(T/2, \cdot)) \text{ в } V^0(\Pi) \times H^0(\Pi).
\]

Так как левые части неравенств (2.53), (2.55) совпадают, то, подставляя в (2.55) \((y_k, \tau_k, f_k, g_k)\) и переходя к пределу при \(k \to \infty\), получим неравенство

\[
(2.61) \quad 1 \leq c_1 (\|\tilde{y}(T/2, \cdot)\|_{V^0(\Pi)}^2 + \|\tilde{\tau}(T/2, \cdot)\|_{H^0(\Pi)}^2).
\]

Очевидно, существует такое \(\bar{\rho}\), что набор \((\tilde{y}, \bar{\rho}, \tau)\) является слабым решением системы (2.9), (2.10) с \(f = 0, g = 0\). В силу теоремы о глажкости слабых решений системы (2.9), (2.10), которые доказываются методами, близкими к использованным при доказательстве леммы 2.4, при любом \(\varepsilon > 0\)

\[
(2.62) \quad \tilde{y} \in V^{1,2}((0, T-\varepsilon) \times \Pi), \quad \tilde{\tau} \in H^{1,2}((0, T-\varepsilon) \times \Pi).
\]

С другой стороны, в силу (2.58), \((\tilde{y}, \tilde{\tau}) \equiv 0\) в \(Q^c\) и, следовательно, согласно следствию 2.1

\[
(\tilde{y}, \tilde{\tau})|_Q \equiv 0,
\]

что противоречит (2.61).

Выстоя \(\alpha_\lambda, \tilde{\alpha}_\lambda\) введем теперь следующие функции:

\[
(2.63) \quad \eta \equiv \eta(t, x) \equiv \alpha_\lambda e^{2\lambda t} \int e^{-\lambda \psi} \, dx, \quad \hat{\eta}(t) = \frac{9}{10} \alpha_\lambda \tilde{\alpha}(t) \eta(t) \frac{T-t}{\tilde{\alpha}(t) \eta(t) + T-t},
\]

где \(\psi\) — функция из леммы 2.1, \(\tilde{\alpha}(t)\) определены в (2.29), а \(\alpha_\lambda, \tilde{\alpha}\) — числа из теоремы 2.4. Докажем теперь аналог оценки (2.53), в котором функция \(\alpha_\lambda\) заменена на \(\eta\).
Теорема 2.5. Пусть выполнены условия теоремы 2.3 и функции \(\eta, \bar{\eta} \) определены в (2.63). Тогда решение задачи (2.9)–(2.11) удовлетворяет оценке:

\[
(2.64) \quad J(y, \tau) \equiv \int_Q (T - t)(|y(t, x)|^2 + |\tau(t, x)|^2)e^{-\eta(t, x)} \, dx \, dt \\
+ \|y(0, \cdot)\|^2_{V^0(\Pi)} + \|\tau(0, \cdot)\|^2_{H^0(\Pi)} \\
\leq c \left(\int_Q (|f(t, x)|^2 + |\nabla f(t, x)|^2 + |g(t, x)|^2)e^{-\eta(t, x)} \, dx \, dt \\
+ \int_{Q^c} (|f(t, x)|^2 + |\tau(t, x)|^2 + |\mu(t, x)|^2)e^{-9\eta(t)/10} \, dx \, dt \right),
\]

где \(c \) не зависит от \(f, g \).

Доказательство. В силу определений (2.3), (2.4), (2.63) функций \(\gamma(t), \alpha(\lambda, t), \eta(t, x) \) справедливо равенство

\[
so(\lambda)\alpha(\lambda, t, x) \equiv \eta(t, x) \quad \text{при} \quad t \in (3T/4, T).
\]

В силу этого равенства и вследствие ограниченности сверху и снизу функций \(\gamma(t), \alpha(\lambda, t, x), \eta(t, x) \) при \(t \in (T/2, T - T_0) \) верна оценка

\[
(2.65) \quad \int_{T/2}^{T} \int_{\Pi} (|y| + |\tau|^2)e^{-\eta(t, x)} \, dx \, dt \\
\leq c \int_{T/2}^{T} \int_{\Pi} (|y| + |\tau|^2)e^{-9\eta(t)/10} \, dx \, dt.
\]

Используя ограниченность сверху и снизу функций \((T - t), \eta(t, x) \) на множестве \((0, T/2) \times \Pi \) и примения энергетическое неравенство (2.13), получим

\[
(2.66) \quad \int_0^{T/2} \int_{\Pi} (|y| + |\tau|^2)e^{-\eta(t, x)} \, dx \, dt + \|y(0, \cdot)\|^2_{V^0(\Pi)} + \|\tau(0, \cdot)\|^2_{H^0(\Pi)} \\
\leq c \sup_{0 \leq t \leq T/2} \left(\|y(t, \cdot)\|^2_{V^0(\Pi)} + \|\tau(t, \cdot)\|^2_{H^0(\Pi)} \right) \\
\leq c \left(\|y(T/2, \cdot)\|^2_{V^0(\Pi)} + \|\tau(T/2, \cdot)\|^2_{H^0(\Pi)} + \|f\|^2_{L^2(0, T/2; V^0(\Pi))} + \|g\|^2_{L^2(0, T/2; H^0(\Pi))} \right) \\
\leq c_1 \left(\|y(T/2, \cdot)\|^2_{V^0(\Pi)} + \|\tau(T/2, \cdot)\|^2_{H^0(\Pi)} + \int_0^{T/2} \int_{\Pi} (|f|^2 + |g|^2)e^{-\eta(t, x)} \, dx \, dt \right).
\]

Складывая неравенства (2.65), (2.66) и примения к правой части полученного неравенства оценку (2.53), получим, учитывая ограниченность сверху и снизу функций
Точная управляемость уравнений Навье—Стокса и Буссинеска

\[(T - t), \eta(t, x) \text{ при } (t, x) \in (0, T/2) \times \Pi, \text{ что справедливы неравенства:} \]
\[
\int_Q (|y|^2 + |r|^2) e^{-\eta(t, x)} dx \, dt + \|y(0, \cdot)\|^2_{V^1_0(\Pi)} + \|r(0, \cdot)\|^2_{H^1_0(\Pi)} \leq c \left(\int_Q \frac{1}{s_0 \lambda} (|y|^2 + |r|^2) e^{-s_0(\lambda)} \, dx \, dt \right)
\]
\[
+ \left(\|y(T/2, \cdot)\|^2_{V^1_0(\Pi)} + \|r(T/2, \cdot)\|^2_{H^1_0(\Pi)} \right) + \int_Q (|f|^2 + |g|^2) e^{-\eta} \, dx \, dt \right)
\]
\[
\leq c \left(\int_Q (|f|^2 + |\nabla f|^2 + |g|^2) e^{-\eta} \, dx \, dt + \int_Q (|f|^2 + |g|^2) e^{-\bar{\eta}} \, dx \, dt \right).
\]

Теорема доказана.

§ 3. Разрешимость задачи точной управляемости для линеаризованной системы Буссинеска

3.1. Постановка задачи. Линеаризуем систему уравнений Буссинеска (1.26), (1.27) в точке \(\tilde{\eta}, \tilde{\rho}, \tilde{\theta} \):

\(N'(\tilde{\eta}, \tilde{\rho}) (y, \tau) \equiv \partial_y - \Delta y + (\tilde{\eta}, \nabla y) + (y, \nabla \tilde{\rho}) + \nabla \tilde{\tau} = -\nabla p + f + u', \quad \text{div} \, y = 0, \)

\(R'(\tilde{\eta}, \tilde{\rho}) (y, \tau) \equiv \partial_\tau - \Delta \tau + (\tilde{\eta}, \nabla \tau) + (y, \nabla \tilde{\rho}) = g + u_{n+1}. \)

Система (3.1), (3.2) рассматривается, как и (1.26), (1.27), при периодических граничных условиях, т.е. \(y = y(t, x), \tau = \tau(t, x), \text{ где } (t, x) \in Q \equiv (0, T) \times \Pi, \text{ а } \Pi \text{—} n\text{-мерный тор (} n = 2, 3). \) Зададим для уравнений (3.1), (3.2) начальные условия

\(y(t, x) \big|_{t=0} = y_0(x), \quad \tau(t, x) \big|_{t=0} = \tau_0(x). \)

Лемма 3.1. Пусть \((\tilde{\eta}, \tilde{\rho}) \in L^\infty(0, T; V^1_0(\Pi)) \times L^\infty(0, T; W^1_0(\Pi)). \) Тогда для любых \(y_0 \in V^1(\Pi), \quad \tau_0 \in H^1(\Pi), \quad f \in (L^2(Q))^n, \quad g \in L^2(Q) \) и любой функции \(u \in U(\omega) \subset (L^2(Q))^n \) существует единственное решение задачи (3.1)—(3.3) \((y, \tau, \nabla p) \in V^1(\Omega) \times H^1(\Omega) \times (L^2(Q))^n, \) и это решение удовлетворяет оценкам

\[
\|y\|^2_{H^1_0(Q)} + \|\tau\|^2_{H^1_0(Q)} + \|\nabla p\|^2_{L^2(Q)} \leq c \left(\|y_0\|^2_{H^1_0(Q)} + \|\tau_0\|^2_{H^1_0(Q)} + \|f\|^2_{L^2(Q)} + \|g\|^2_{L^2(Q)} + \|u\|^2_{L^2(Q)} \right).
\]

Эта лемма доказывается так же, как лемма 2.4.

Постановка для системы уравнений (3.1), (3.2) задачу управляемости, наложив поименно (3.3) следующие условия в момент времени \(T: \)

\[
y(T, x) \equiv 0, \quad \tau(T, x) \equiv 0.
\]

При этом искомыми функциями являются не только \((y, \tau, \nabla p), \) но также и управление \(u = (u', u_{n+1}). \)
Для точной постановки задачи управлениямость вводим необходимые функциональные пространства для вхождений данных и решений задачи (3.1)–(3.3) (3.5).

Пусть, как и раньше, $\omega \subset \Pi$ – подобласть тора Π,

$$
\chi_\omega(x) = \begin{cases}
1, & x \in \omega, \\
0, & x \in \overline{\omega},
\end{cases}
$$

– характеристическая функция множества ω. Вводим весовые функции

$$
\rho_1(t, x) = e^{\tilde{\eta}(t)} \chi_\omega(x) + \frac{e^{\tilde{\eta}(t)}(1 - \chi_\omega(x))}{t - T}.
$$

(3.6)

$$
\rho(t) = e^{\tilde{\eta}(t)},
$$

(3.7)

где $\eta(t, x), \tilde{\eta}(t)$ – функции, определенные в (2.63).

Пусть

$$
L_2(\rho, Q) = \left\{ y(t, x) \in L_2(Q) : \| y \|^2_{L_2(\rho, Q)} = \int_Q \rho y^2 \, dx \, dt < \infty \right\}.
$$

Аналогично определяется пространство $L_2(\rho_1, Q)$.

Вводим пространство правых частей для уравнения (3.1):

$$
F(Q) = \left\{ f \in L_2(0, T; (L_2(\Pi))^n) : \exists f_1 \in (L_2(\rho_1, Q))^n \text{ и } \exists f_2 \in L_2(0, T; H^1(\Pi)) \right\}
$$

такие, что $f = f_1 + \nabla f_2$, $\| f \|_{F(Q)} = \inf_{f = f_1 + \nabla f_2} \left(\| f_1 \|^2_{L_2(\rho_1, Q)})^n + \| f_2 \|^2_{L_2(0, T; H^1(\Pi))} \right)^{1/2}.

(3.9)

Пространство решений системы (3.1), (3.2) определяем следующим образом:

$$
\Theta = \left\{ (y, \tau) \in V^{1,2}(Q) \times H^{1,2}(Q) : L(y, \tau) \in F(Q) \times L_2(\rho_1, Q), \right\}
$$

$$
\eta e^{\tilde{\eta}/2} \in V^{1,2}(Q), \tau e^{\tilde{\eta}/2} \in H^{1,2}(Q),
$$

где $L(y, \tau) = (N^r(\tilde{\theta})(y, \tau), R^l(\tilde{\theta})(y, \tau))$, а N^r, R^l – операторы из (3.1), (3.2). Норма пространства Θ определяется равенством:

$$
\|(u, \tau)\|^2_\Theta = \| L(y, \tau) \|^2_{F(Q) \times L_2(\rho_1, Q)} + \| \eta e^{\tilde{\eta}/2} \|^2_{V^{1,2}(Q)} + \| \tau e^{\tilde{\eta}/2} \|^2_{H^{1,2}(Q)}.
$$

(3.10)

Пространство уравнений определяем формулой:

$$
U(\rho, \omega) = \left\{ u = (u', u_{n+1}) \in (L_2(\rho, Q))^{n+1} \text{ с supp } u \subset Q^m = (0, T) \times \omega \right\}.
$$

(3.12)

Основным утверждением этого параграфа является

Теорема 3.1. Пусть $(\tilde{v}, \tilde{\theta}) \in W^{1,2}_c(0, T; V^2_\infty(\Pi)) \times W^{1,2}_\infty(0, T; W^2_\infty(\Pi))$. Тогда для любых $y_0 \in V^1(\Pi)$, $\tau_0 \in H^1(\Pi)$, $f \in F(Q)$, $g \in L_2(\rho_1, Q)$ существует решение $(y, p, \tau, u) \in V^{1,2}(Q) \times L_2(0, T; H^1(\Pi)) \times H^{1,2}(Q) \times U(\rho, \omega)$ задачи (3.1)–(3.3), (3.5).

Доказательству этой теоремы посвящена оставшаяся часть этого параграфа.
3.2. Вспомогательная экстремальная задача. Для доказательства теоремы 3.1 мы применим некоторый вариант метода штрафов. Рассмотрим экстремальную задачу

\begin{align}
J_h(y, \tau, u) &= \frac{1}{2} \int_Q \rho(t)|y|^2 + \tau^2\, dx\, dt + \frac{1}{2} \int_Q m_k(t, x)|u|^2\, dx\, dt \to \inf, \\
L(y, \tau) &= (-\nabla p + f + u' + g + u_{n+1}), \quad \text{div } y = 0, \\
y(t, x)|_{t=0} = y_0(x), \quad \tau(t, x)|_{t=0} = \tau_0(x),
\end{align}

gде \(L(y, \tau) = (N'(\tilde{v}, \tilde{\theta})(y, \tau), R'(\tilde{v}, \tilde{\theta})(y, \tau)) \), а операторы \(N' \) и \(R' \) определены в (3.1), (3.2) соответственно. При этом функция \(\rho(t) \) определена в (3.7), а \(m_k(t, x) \) задается формулой

\begin{equation}
m_k(t, x) = \chi_\omega(x)e^{-\frac{T-t}{\tau_{n+1}}/\xi} + (1 - \chi_\omega(x))k,
\end{equation}

где \(\chi_\omega(x) \) – характеристическая функция множества \(\omega \), \(\tilde{q}(t) \) – функция из (2.63), \(k \) – натуральное число.

Лемма 3.2. Пусть \(f \in (L_2(\rho_1, Q))^n \), \(g \in L_2(\rho_1, Q) \), \(y_0 \in V^1(\Pi) \), \(\tau_0 \in H^1(\Pi) \). При любом натуральном \(k \) существует единственное решение \((y, \tau, \nabla p, u) \in V^{1,2}(Q) \times H^{1,2}(Q) \times (L_2(Q))^n \times (L_2(Q))^{n+1} \), удовлетворяющий соотношениям (3.14), (3.15) и для которого конечен функционал из (3.13).

Множество допустимых элементов, обозначим буквой \(\mathcal{A} \). Пусть \((y, \tau, \nabla p) \in V^{1,2}(Q) \times H^{1,2}(Q) \times (L_2(Q))^n \) является решением задачи (3.1)–(3.3) с \(u \equiv 0 \), а \(\mu(t) \in C^\infty(0, T) \) – функция, равная единице в окрестности нуля и нулю в окрестности \(T \). Пусть \(u(t, x) = \left(\frac{d\mu}{dt} y - f + \mu f, \frac{d\mu}{dt} \tau - g + \mu g\right) \). Тогда четверка функций \((\mu(t)y, \mu(t)\tau, \mu(t)p, u) \) \(\in \mathcal{A} \).

Так как \(\mathcal{A} \neq \emptyset \), существует последовательность \((y_m, \tau_m, \nabla p_m, u_m) \) \(\in \mathcal{A} \), минимизирующая функционал \(J_k \):

\begin{equation}
J_k(y_m, \tau_m, \nabla p_m, u_m) \to \inf_{(y, \tau, \nabla p, u) \in \mathcal{A}} J_k(y, \tau, \nabla p, u).
\end{equation}

Из (3.17) и оценки (3.4) следует, что

\[||y_m||_{V^{1,2}(Q) \cap L_2(\rho_1, Q)} + ||\tau_m||_{H^{1,2}(Q) \cap L_2(\rho_1, Q)} + ||\nabla p_m||_{L_2(Q)} + ||u_m||_{(L_2(Q))^{n+1}} \leq c, \]

где \(c \) не зависит от \(m \). Поэтому из минимизирующей последовательности можно выбрать подпоследовательность, слабо сходящуюся в \(V^{1,2}(Q) \cap L_2(\rho_1, Q) \) к функции \(\tilde{y}(\tilde{\tau}, \tilde{\nabla p}, \tilde{u}) \). Легко видеть, что данный штраф является решением задачи (3.13)–(3.15). Единственность решения этой задачи обычным образом выводится из строгой выпуклости функционала (3.13).

Выведем систему оптимальности для задачи (3.13)–(3.15).
Лемма 3.3. Пусть выполнены условия леммы 3.2 и \((y_k, \tau_k, \nabla p_k, u_k) \in (V^{1,2}(Q) \cap (L_2(\rho, Q))^n) \times (H^{1,2}(Q) \cap L_2(\rho, Q)) \times (L_2(Q))^n \times (L_2(Q))^{n+1}\) — решение задачи (3.13)–(3.15). Тогда существует набор \((z_k, r_k, \nabla q_k) \in L_2(0, T; V^0(\Pi)) \times L_2(Q) \times (L_2(Q))^n\) такой, что

\begin{equation}
L(y_k, \tau_k) = (-\nabla p_k + f + u_k, g + u_k, n + 1). \quad y_k(0, x) = y_0(x), \quad \tau_k(0, x) = \tau_0(x),
\end{equation}

\begin{equation}
L^*(z_k, r_k) = (\nabla q_k - \rho y_k, -\rho \tau_k) \in Q,
\end{equation}

где

\begin{equation}
L^*(z_k, r_k) = (N^*(z_k, r_k), R^*(z_k, r_k)),
\end{equation}

а операторы \(N^*\) и \(R^*\) определены в (2.9), (2.10). При этом для \((z_k, r_k)\) выполнена оценка

\begin{equation}
\int_Q (T - t) ((|z_k|^2 + |r_k|^2)e^{-\eta} dx dt + \|q_k(0, \cdot)\|_{V^0(\Pi)}^2 + \|r_k(0, \cdot)\|_{L_2(\Pi)}^2)
\leq C_2 \int_Q \rho^2 (|y_k|^2 + |r_k|^2)e^{-\eta} dx dt + \int_{Q^*} \rho^2 |u_k|^2 + \rho^2 |y_k|^2 e^{-\eta} dx dt,
\end{equation}

где \(C_2\) не зависит от \((y_k, \tau_k, u_k)\).

Доказательство. Соотношения (3.18) справедливы в силу (3.14), (3.15).

Для вывода (3.19), (3.20) воспользуемся принципом Лагранжа для абстрактной гладкой задачи вида

\begin{equation}
J(x) \to \inf, \quad F(x) = 0,
\end{equation}

где \(J: X \to \mathbb{R}^1\) — непрерывно дифференцируемый функционал, а \(F: X \to Z\) — линейный непрерывный оператор в гильбертовых пространствах \(X, Z\). Как показано в книгах В. М. Алексеева, В. М. Тихомирова, С. В. Фомина [2] и А. В. Фурсикова [30], если \(\tilde{x}\) — локальный экстремум задачи (3.22), а оператор \(F\) действует на \(Z\), то существует \(z \in Z^* = Z\), такой, что функционал Лагранжа \(L(x, z) = J(x) + (Fx, z)\) удовлетворяет равенству

\begin{equation}
L'(z, (\tilde{x}, z)) = 0 \quad \forall h \in X.
\end{equation}

В случае задачи (3.13)–(3.15) \(x = (y, \tau, \nabla p, u, X) = (V^{1,2}(Q) \cap (L_2(\rho, Q))^n) \times (H^{1,2}(Q) \cap L_2(\rho, Q)) \times L_2(0, T; V^0(\Pi)) \times (L_2(Q))^n\), где \(V^0(\Pi) = \{\nabla p(x), \rho \in H^1(\Pi)\}, J(x) = J_k(y, \tau, \rho)\) — функционал из (3.13), \(Z = (L_2(Q))^n \times V^0(\Pi)\), \(F(x) = (L(y, \tau) - (\nabla p, 0) - u, y|_{t=0}, \tau|_{t=0})\), где \(L(y, \tau)\) — оператор (3.14). Для доказательства сюръективности оператора \(F: X \to Z\) устанавливаем разрешимость оператора

\begin{equation}
L(y, \tau) - (\nabla p, 0) - u = (f, g), \quad y|_{t=0} = \tilde{y}_0, \quad \tau|_{t=0} = \tilde{\tau}_0
\end{equation}

для любых \((f, g, \tilde{y}_0, \tilde{\tau}_0) \in (L_2(\rho_1, Q) \times V^0(\Pi) \times H^1(\Pi))\). Действительно, представив произвольный набор \((y, \tau) \in (V^{1,2}(Q) \cap (L_2(\rho, Q))^n) \times (H^{1,2}(Q) \cap L_2(\rho, Q))\), удовлетворяющий (3.24), (3.24), в (3.24), найдём из этого равенства и, считая \(p = 0\),
Очевидно \(u = (u', u_{n+1}) \in (L_2(Q))^n \). Таким образом, к задаче (3.13)–(3.15) можно применить принцип Лагранжа. Функция Лагранжа в этом случае имеет вид

\[
\mathcal{L}(y, \tau, \nabla p, u, z, r, \phi_1, \phi_2) = J_k(y, \tau, u) \\
+ \int_Q \left[N'(\tilde{\theta}, \tilde{\theta})(y, \tau) \cdot z + R'(\tilde{\theta}, \tilde{\theta})(y, \tau)r - \nabla p \cdot z - u' \cdot z - u_{n+1}r \right] dx dt \\
+ (\varphi(0, \cdot) - \tilde{\tau}_0, \phi_1)_{V_0[\Pi]} + (\tau(0, \cdot) - \tilde{\tau}_0, \phi_2)_{H^0[\Pi]},
\]

где \((z, r, \phi_1, \phi_2) \in (L_2(Q))^n \times V^{-1}(\Pi) \times H^{-1}(\Pi) - \) элемент гильбертово пространство \(Z^* \), а \((N', R') = L - \) операторы (3.1), (3.2). Применяя к функции Лагранжа (3.25) равенство (3.23), в котором дифференцирование производится по переменной \(x = (y, \tau, 0, 0, 0) \), получим (3.19), а применим (3.23) с дифференцированием по переменной \(x = (0, 0, 0, u', u_{n+1}) \), получим равенство (3.20). Дифференцируя функцию Лагранжа по \(\nabla p \), получаем, что \(\text{div} z_k = 0 \). Применя к соотношению (3.19) неравенство (2.64) с \(y = z_k, \tau = r_k, \nabla p = \nabla q_k, f = -p_k, \varphi = -r_k, \) а затем в интеграле по \(Q^n \) из правой части использовали (3.20), получим неравенство (3.21).

3.3. Доказательство основного результата. Ниже мы докажем теорему 3.1 с помощью перехода к пределу при \(k \to \infty \) в задаче (3.13)–(3.15). Чтобы это сделать, оценим сначала величину \(J_k(y_k, \tau_k, u_k) \).

Лемма 3.4. Пусть \(f \in (L_2(\rho_1, Q))^n \), \(f|_{Q_0} \equiv 0 \), \(g \in L_2(\rho_1, Q), g|_{Q_0} \equiv 0 \), \(y_0 \in V^{-1}(\Pi), \tau_0 \in H^{-1}(\Pi) \) и \((y_k, \tau_k, \nabla p_k, u_k) -\) решение задачи (3.13)–(3.15), построенное в лемме 3.2. Тогда существует константа \(c > 0 \), не зависящая от \(k \), такая, что

\[
J_k(y_k, \tau_k, u_k) \leq c (\|f\|^2_{L_2(\rho_1, Q)} + \|g\|^2_{L_2(\rho_1, Q)} + \|\varphi_0\|^2_{V_0[\Pi]} + \|\tau_0\|^2_{H_0[\Pi]}).
\]

Доказательство. Пусть \((z_k, r_k) -\) функции, построенные в лемме 3.3 и удовлетворяющие оценке (3.21). Учитывая определения (3.16), (3.7) функции \(m_k(t, x) \) и \(\rho(t) \), получим, что

\[
|\chi_n(x)m_k(t, x)e^{-\eta}| \leq c, \quad \rho^2(t)e^{-\eta(t)} = \rho(t), \quad \rho^2(t)e^{-\eta(t,x)} \leq c\rho(t),
\]

где константа \(c \) не зависит от \(k \).

Применим эти соотношения к правой части неравенства (3.21) и учитывая определение (3.13) функционала \(J_k \), легко вывести из (3.21) следующую оценку:

\[
\int_Q (T-t)(|z_k|^2 + |r_k|^2)e^{-\eta} dx dt + \|z_k(0, \cdot)\|^2_{V_0[\Pi]} + \|r_k(0, \cdot)\|^2_{L_2[\Pi]} \leq c_1 J_k(y_k, \tau_k, u_k),
\]

где константа \(c_1 \) не зависит от \(k \). Умножая (3.19) на \((y_k, \tau_k)\) скалярно в \((L_2(Q))^n \times L_2(Q))\), интегрируя по части по \(x \) и \(t \) и учитывая (3.18), получим равенство

\[
-\int_Q \rho(|y_k|^2 + |r_k|^2) dx dt \\
= (z_k(0, \cdot), y_0)_{V_0[\Pi]} + (r_k(0, \cdot) \tau_0)_{L_2[\Pi]} + \int_Q ((f + u_{n+1}k, z_k) + (g + u_{n+1}, r_k)) dx dt.
\]
Из этого равенства в силу (3.20) и определения (3.13) функционала J_k следует:

$$2J_k(y_k, \tau_k, u_k)$$

$$= -(z_k(0, \cdot), \tau_0)_{W^1_0(\Omega)} - (r_k(0, \cdot), \tau_0)_{L^2(\Omega)} - \int_Q ((f, z_k) + gr_k) \, dx \, dt$$

$$\leq \left(\left\| z_k(0, \cdot) \right\|_{W^1_0(\Omega)}^2 + \left\| r_k(0, \cdot) \right\|_{L^2(\Omega)}^2 + \int_Q (T-t) \left(|z_k|^2 + |r_k|^2 \right) e^{-\eta} \, dx \, dt \right)^{1/2} \times$$

$$\times \left(\left\| \eta_0 \right\|_{W^1_0(\Omega)}^2 + \left\| \tau_0 \right\|_{L^2(\Omega)}^2 + \left\| f \right\|_{L^2(\rho, Q))^n + \left\| g \right\|_{L^2(\rho, Q))^1/2} \right)^{1/2} J_k^{1/2}(y_k, \tau_k, u_k),$$

где $\rho_1 - \text{вес из (3.6), здесь мы воспользовались предположением: } f |_{Q^\omega} = 0, g |_{Q^\omega} = 0$.

Применим к правой части последнего неравенства оценку (3.27), получим

$$2J_k(y_k, \tau_k, u_k)$$

$$\leq c_1 \left(\left\| f \right\|_{L^2(\rho, Q))^n + \left\| g \right\|_{L^2(\rho, Q))^n + \left\| \eta_0 \right\|_{W^1_0(\Omega)}^2 + \left\| \tau_0 \right\|_{L^2(\Omega)}^2 + \left\| f \right\|_{L^2(\rho, Q))^n + \left\| \eta_0 \right\|_{L^2(\Omega)}^2 \right)^{1/2} J_k^{1/2}(y_k, \tau_k, u_k).$$

Отсюда следует (3.26).

Доказательство теоремы 3.1. Сначала предположим, что $f |_{Q^\omega} = 0, g |_{Q^\omega} = 0$.

Рассмотрим последовательность $(y_k, \tau_k, \nabla p_k, u_k)$ решений задачи (3.13)–(3.15), когда параметр k стремится к бесконечности. Из (3.26), (3.13), (3.16) следует, что

$$\left(3.28\right) \quad \|y_k\|_{L^2(\rho, Q))^n + \|\tau_k\|_{L^2(\rho, Q))^n + k \int_{Q^\omega} |u_k|^2 \, dx \, dt + \int_{Q^\omega} e^\eta |u_k|^2 \, dx \, dt \leq c,$$

где c не зависит от k. В силу (3.28) и оценки (3.4)

$$\left(3.29\right) \quad \|y_k\|_{L^2(\rho, Q))^n + \|\tau_k\|_{H^1(\Omega)}^2 + \|
abla p_k\|_{L^2(\Omega)}^2 \leq c_1,$$

где c_1 также не зависит от k. В силу (3.28), (3.29) из последовательности решений можно выбрать подпоследовательность, которую мы также обозначим через $\{(y_k, \tau_k, \nabla p_k, u_k)\}$, такую, что

$$y_k \rightarrow \tilde{y} \text{ слабо в } V^{1,2}(Q) \cap (L^2(\rho, Q))^n, \quad \tau_k \rightarrow \tilde{\tau} \text{ слабо в } H^{1,2}(Q) \cap L^2(\rho, Q),$$

$$\nabla p_k \rightarrow \nabla \hat{p} \text{ слабо в } (L^2(\Omega))^n, \quad u_k \rightarrow u \text{ слабо в } (L^2(\Omega))^n + 1.$$

При этом в силу (3.28)

$$\left(3.31\right) \quad \left(1 - \chi_\omega(x) \right) u_k \rightarrow 0 \text{ в } (L^2(Q))^n,$$

$$\lim_{k \to \infty} \int_Q m_k |u_k(t, x)|^2 \, dx \, dt \leq c,$$

где $c > 0$ – та же константа, что и в (3.28), и, значит,

$$\int_0^{T-\varepsilon} \int_Q e^\eta |\tilde{u}(t, x)|^2 \, dx \, dt \leq c \quad \forall \varepsilon > 0,$$
что немедленно влечёт

\[
\int_{Q^*} |\tilde{u}(t, x)|^2 e^{\tilde{v}} \, dx \, dt \leq c.
\]

Из (3.31), (3.32) следует, что \(\tilde{u}(t, x) \in U(\rho, \omega) \) (см. (3.12)). Используя (3.30), пере-
йдём к пределу при \(k \to \infty \) (3.18). В результате получим, что набор \((\tilde{y}, \tilde{\tau}, \nabla \tilde{p}, \tilde{u}) \in (V^{1,2}(Q) \cap L_2(\rho, Q))^n \times (H^{1,2}(Q) \cap L_2(\rho, Q))^n \times U(\rho, \omega) \) удовлетворяет соответственно (3.18), а значит, и (3.1)–(3.3). Пусть \(\tilde{q}(\tilde{t}) \) – функция из (3.7), определённая в (2.63). Сделав в (3.1)–(3.3) замену \(\tilde{y} = e^{\frac{d\tilde{t}}{dt}} \tilde{y}, \tilde{\tau} = e^{\frac{d\tilde{t}}{dt}} \tilde{\tau}, \tilde{u} = e^{\frac{d\tilde{t}}{dt}} \tilde{u}, \tilde{p} = e^{\frac{d\tilde{t}}{dt}} \tilde{p} \), получим, что функции \((\tilde{y}, \tilde{\tau}, \nabla \tilde{p}, \tilde{u})\) удовлетворяют системе уравнений

\[
N(\tilde{y}, \tilde{\tau})(\tilde{y}, \tilde{\tau}) = \nabla \tilde{p} + e^{\frac{d\tilde{t}}{dt}} f + \tilde{u} + \frac{9}{21} \frac{d\tilde{y}(\tilde{t})}{dt} \tilde{y}, \quad \text{div} \tilde{y} = 0,
\]

\[
R(\tilde{y}, \tilde{\tau})(\tilde{y}, \tilde{\tau}) = e^{\frac{d\tilde{t}}{dt}} g + \tilde{u} + \frac{9}{21} \frac{d\tilde{y}(\tilde{t})}{dt} \tilde{\tau}.
\]

Выше доказано, что правая часть системы (3.33), (3.34) принадлежит пространству,

\[
L_2(0, T; \Theta \times (L_2(\rho, Q))^n) \times U(\rho, \omega).
\]

(3.32) так, что в силу свойств функции \(\rho \) из (3.18) \((\tilde{y}, \tilde{\tau}, \nabla \tilde{p}, \tilde{u})\) является решением линейной задачи точной управляемости

(3.1)–(3.3). Согласно (3.31) 1, если функции \((f, g) = \Theta \times (L_2(\rho, Q))^n \times U(\rho, \omega). \)

(3.33) (3.34) и принадлежит пространству \(F(Q) \times L_2(\rho_1, Q) \) (см. (3.11)). Легко видеть, что функция \((y, \tau, \nabla p, \tau) \in \Theta \times (L_2(\rho, Q))^n \times U(\rho, \omega). \)

(3.1)–(3.3) с исходными данными \((f_1, g_1, 0, \tau_0)\).

\section*{§ 4. Локальная точная управляемость системы Буссинеска}

Этот параграф посвящён доказательству теоремы 1.5. Мы будем искать решение задачи (1.26), (1.27), (1.24), (1.25) в виде

\[
v(t, x) = \tilde{v}(t, x) + y(t, x), \quad \theta(t, x) = \tilde{\theta}(t, x) + \tau(t, x), \quad \nabla p = \nabla \tilde{p} + \nabla q,
\]

где \((\tilde{v}, \tilde{\theta}, \tilde{p})\) – решение системы Буссинеска (1.26), (1.27) с \(u = 0 \), удовлетворяющее условиям теоремы 1.5. Подставляя (4.1) в (1.26), (1.27) и вычитая из полученных уравнений управления (1.26), (1.27) для \((\tilde{v}, \nabla \tilde{p}, \tilde{\tau})\), мы придём к системе для новых независимых функций \((y, \tau, \nabla q, \tau)\):

\[
N(y, \tau, q, u) = \partial_y y - \Delta y + \tilde{v} + (\tilde{v}, \nabla) y + (y, \nabla) \tilde{v} + \tau \tilde{e} + \nabla q + u' = 0, \quad \text{div} y = 0,
\]

\[
R(y, \tau, u) = \partial_y \tau - \Delta \tau + (\tilde{v}, \nabla) \tau + (y, \nabla) \tilde{\tau} + (y, \nabla) \tau + u_{n+1} = 0,
\]

\[
y(0, \cdot) = v_0 - \tilde{v}(0, \cdot), \quad \tau(0, \cdot) = \tilde{\theta}(0, \cdot),
\]

\[
y(T, \cdot) = 0, \quad \tau(T, \cdot) = 0.
\]
Введем отображение $A(y, \tau, q, u)$ посредством формулы

$$A(y, \tau, q, u) = (N(y, \tau, q, u), R(y, \tau, q, u), g(0, \cdot), \tau(0, \cdot)).$$

Для исследования задачи (4.2)–(4.6) воспользуемся следующим вариантом теоремы о непрерывности функции (см. [2]).

Теорема 4.1. Пусть X, Z — банаховы пространства и $A \in C^1(X; Z)$ — непрерывно дифференцируемое отображение из X в Z. Предполагается, что для некоторых $x_0 \in X, z_0 \in Z$

$$A(x_0) = z_0$$

и производная $A'(x_0): X \to Z$ отображения A в точке x_0 является эпиморфизмом. Тогда найдется такое $\varepsilon > 0$, что для любого $z \in \{z \in Z : \|z - z_0\| < \varepsilon\}$ существует решение $x \in X$ уравнения $A(x) = z$.

Доказательство теоремы 1.5. Замена переменных (4.1) сводит задачу (1.24)–(1.27) к задаче (4.2)–(4.5). Разрешимость этой задачи мы докажем при малых $(v_0 - \hat{v}(0), \cdot, \theta_0 - \hat{\theta}(0, \cdot))$ с помощью теоремы 4.1. Для этого положим:

$$X = \Theta \times L_2(0, T; \nabla H^1(\Pi)) \times U(\rho, \omega),$$

$$Z = F(Q) \times L_2(\rho_1, Q) \times V^1(\Pi) \times H^1(\Pi),$$

где $L_2(\rho, Q), F(Q), \Theta, U(\rho, \omega)$ — пространства (3.8), (3.9), (3.10), (3.12) соответственно. Определим отображение A формулами (4.6), (4.2), (4.3), а пространства X, Z посредством (4.8), (4.9). Отметим, что соотношения (4.5) будут выполняться автоматически, так как $x = (y, \tau, q, u) \in X$, где X — пространство (4.8). Положим $y_0 = (0, 0, 0, 0)$, $z_0 = (0, 0, 0, 0)$; для таких x_0, z_0, очевидно, выполнено условие (4.7). С помощью элементарных оценок устанавливается непрерывность и дифференцируемость оператора $A(x) : X \to Z$. Справедливость отображения $A'(x_0) : X \to Z$ доказана в теореме 3.1. Таким образом, оператор (4.6), (4.2), (4.3), действующий в пространствах (4.8), (4.9), удовлетворяет всем предположениям теоремы 4.1, а значит, для него справедливо и утверждение этой теоремы. Итак, разрешимость задачи (4.2)–(4.5) при малых $(v_0 - \hat{v}(0, \cdot), \theta_0 - \hat{\theta}(0, \cdot))$ доказана, а значит, доказана и теорема 1.5.

§ 5. Апроксимативная управляемость системы Буссинеска: сведение к случаю линейной системы специального вида

5.1. Идея доказательства. В этом и следующих параграфах будет доказана апроксимативная управляемость системы Буссинеска (1.26), (1.27), т. е. системы

$$\begin{align*}
\partial_t u - \Delta u + (v, \nabla)u + \theta \nabla - \nabla p &= f + u', \quad \text{div} v = 0, \\
\partial_t \theta - \Delta \theta + (v, \nabla \theta) &= g + u_{n+1},
\end{align*}$$

где (f, g) — заданные внешние силы, а управление $u = (u', u_{n+1})$ сосредоточено в $Q^\omega = (0, T) \times \omega$. Как и ранее, система (5.1), (5.2) рассматривается в цилиндре
Точная управляемость уравнений Навье-Стокса и Буссинеска

\[Q = (0,T) \times \Pi, \text{ где } \Pi - n \text{-мерный тор, } n = 2, 3. \text{ Предполагается, что при } t = 0 \text{ заданы начальные условия}

\[v|_{t=0} = v_0, \quad \theta|_{t=0} = \theta_0, \]

где \(v_0 \in V^0(\Pi) \cap (C^{2,0}(\Pi))^n, \theta_0 \in C^{2,0}(\Pi) \) - заданные функции. Напомним, что задача аппроксимативной управляемости состоит в следующем: для любого \(v_1 \in V^0(\Pi) \cap (C^{2,0}(\Pi))^n, \theta_1 \in C^{2,0}(\Pi) \) и любого \(\varepsilon > 0 \) построить такое управление

\[u = (u', u_{n+1}) \in U(\omega; 0, T) \]

чтобы сужение решений \((v, \nabla p, \theta)\) задачи (5.1)-(5.3) при \(t = T \) удовлетворяло условию:

\[\|v(t, \cdot) - v_1\|_{H^1(\Pi)}^2 + \|\theta(t, \cdot) - \theta_1\|_{H^1(\Pi)}^2 < \varepsilon^2. \]

Пусть \(m(t, x) = (m_1, \ldots, m_n) \in C^\infty(Q) \) - векторное поле на \(Q \), причем

\[\text{div } m(t, x) = \sum_{i=1}^n \partial_i m_i = 0, \quad (t, x) \in Q, \quad \text{и } m(t, x) = \nabla \gamma(t, x), \quad (t, x) \in Q \setminus Q^\varepsilon, \]

где \(\gamma(t, x) \) - некоторая функция на \(Q \setminus Q^\varepsilon \), которая в силу (5.5) гармонична на \(\Pi \setminus \omega \) для любого \(t \in (0, T) \).

Мы хотим свести задачу аппроксимативной управляемости (5.1)-(5.4) к доказательству точной управляемости системы линейных уравнений первого порядка с коэффициентами, которые мы сами и выберем. Эти коэффициенты будут определяться некоторым векторным полем \(m \) вида (5.5). Будем искать решение \((v, p, \theta)\) в виде

\[v = z + m, \quad \theta = r; \quad \text{div } z = 0, \quad \text{div } m = 0 \]

(каким при этом получится давление \(p \), будет видно ниже). Подставив (5.6) в (5.1), (5.2), получим:

\[\begin{align*}
\partial_t z + (m, \nabla) z + (z, \nabla)m + (z, \nabla)z - \Delta z + \partial_k m \\
- \Delta m + (m, \nabla)m - \nabla p + \rho \nu = f + u', \quad \text{div } z = 0,
\end{align*} \]

(5.7)

\[\begin{align*}
\partial_t r + (m, \nabla)r + (z, \nabla)r - \Delta r = g + u_{n+1}.
\end{align*} \]

(5.8)

Отметим, что основная трудность состоит в построении требуемых функций \((z, r)\) на множестве \(Q \setminus Q^\varepsilon \). Действительно, если \((z, r)\) построены на \(Q \setminus Q^\varepsilon \), мы продолжим \((z, r)\) на \(Q^\varepsilon \) произвольным образом с сохранением лишь условия \(\text{div } z = 0 \) и с предписанными значениями для \((z, r)\) при \(t = T, x \in \omega \). После этого, подставляя \((z, r)\) в левую часть (5.7), (5.8), определим управление \(u \).

Покажем, что в силу (5.5.2) выражение \(\partial_t m - \Delta m + (m, \nabla)m \) на \(Q \setminus Q^\varepsilon \) является градиентом некоторой функции \(q_1 \):

\[\partial_t m - \Delta m + (m, \nabla)m = \nabla q_1. \]

(5.9)

\[\text{Пространство управлений } U(\omega; 0, T) \text{ определяют формулой (1.28).} \]
Действительно, в силу (5.5.2) $\partial_t m - \Delta m = \nabla(\partial_t \gamma - \Delta \gamma)$. Далее,

$$(m, \nabla)m = \sum_{j=1}^{n} m_j \partial_j m = \sum_{j=1}^{n} \partial_j \gamma \partial_j \nabla \gamma = \frac{1}{2} \nabla |\nabla \gamma|^2 \quad n \quad Q \setminus Q'.'$$

В дальнейшем мы проведем сокращение временной координаты $t \rightarrow t/\delta$, за счет чего члены $(z, \nabla) z, \Delta z, \gamma^c, f$ в (5.7) и $(z, \nabla) r, \Delta r, g$ в (5.8) окажутся малыми. Оставляя главные члены в (5.7), (5.8), получим систему:

$$\begin{align}
\partial_t z + (m, \nabla) z + (z, \nabla)m - \nabla q = u', \\
\partial_t r + (m, \nabla) r = u_{n+1},
\end{align}$$

где $\nabla q = \nabla p - \nabla q_1$, а ∇q_1 определено в (5.9). Начальное условие для уравнений (5.10), (5.11) порождается условиями (5.3):

$$\begin{align}
z|_{t=0} = \tilde{v}_0, \\
r|_{t=0} = \tilde{r}_0,
\end{align}$$

а условие аппроксимации уравнения (5.4) мы заменим условием точной управляемости

$$\begin{align}
z(T, \cdot) = \tilde{v}_1, \\
r(T, \cdot) = \tilde{r}_1.
\end{align}$$

При этом $\tilde{v}_j \in V^0(\Pi) \cap (C^\infty(\Pi))^n, \tilde{r}_j \in C^\infty(\Pi), j \in \{0, 1\}$, будут выбраны близкими соответственно к $v_j, \theta_j, j \in \{0, 1\}$.

Коэффициенты системы (5.10), (5.11) определяются векторным полем m, которое строится в следующей лемме.

Лемма 5.1. Существуют момент времени $T > 0$ и векторное поле $m(t, x) = (m_1, \ldots, m_n) \in (C^\infty(Q))^n$, удовлетворяющее уравнениям (5.3), такие, что

$$\begin{align}
m(0, x) \equiv m(T, x) \equiv 0, \\
\frac{\partial^k m(t, x)}{\partial t^k} \bigg|_{t=0} \equiv \frac{\partial^k m(t, x)}{\partial t^k} \bigg|_{t=T} \equiv 0, \quad k \in \mathbb{N}
\end{align}$$

(к k любое натуральное число), и при любом $x_0 \in \Pi$ выполнено соотношение

$$\{t, x(t, x_0), t \in (0, T)\} \cap Q' \neq \emptyset,$$

где $x(t, x_0)$ — решение следующей задачи Коши:

$$\begin{align}
\frac{d}{dt}x(t, x_0) = m(t, x(t, x_0)), \\
x(t, x_0)|_{t=0} = x_0.
\end{align}$$

При этом для любого $x_0 \in \Pi$ справедливо равенство $x(T, x_0) = x_0$. Кроме того, существует конечное покрытие $\{\theta_i, i = 1, \ldots, k\}$ това Π открытыми множествами θ_i и число $\Delta > 0$ такое, что при любом i все кривые $x(t, x_0), x_0 \in \theta_i$, одновременно находятся в ω в течение некоторого временного интервала длиной Δ.

Теорема 5.1. Пусть \(m(t; x) \) удовлетворяет всем условиям леммы 5.1 и ждем \(\bar{v}_i \in C^\infty(\Pi) \) и \(\bar{\theta}_i \in C^\infty(\Pi) \), \(i = 0, 1 \). Тогда существует решение

\[
(z, \nabla q, r, u) \in ((C^\infty(Q))^n \cap V^{1,2}(Q)) \times (C^\infty(Q))^n \times C^\infty(Q) \times \{U(\omega; 0, T) \cap C^\infty(Q)\}^{n+1}
\]

задачи (5.10)-(5.13), при любом \(k \geq 2 \) и \(\alpha \in (0, 1) \) удовлетворяющее неравенству

\[
\|z\|_{C^k([0, T]; C^{k,\alpha}(\Pi))}^2 + \|r\|_{C^k([0, T]; C^{k,\alpha}(\Pi))}^2
+ \|\nabla q\|_{C^k([0, T]; C^{k,\alpha}(\Pi))}^2 + \|u\|_{C^k([0, T]; C^{k,\alpha}(\Pi))}^2
\leq c_k \left(\sum_{j=0}^{n+1} (|\bar{v}_{j}|_{C^{k,\alpha}(\Pi)}^2 + |\bar{\theta}_{j}|_{C^{k,\alpha}(\Pi)}^2) \right),
\]

где константа \(c_k \) зависит лишь от нормы векторного поля \(m(t; x) \) в пространстве \((C^{k,\alpha}(Q))^n\).

Доказательства леммы 5.1 и теоремы 5.1 будут приведены в следующем параграфе, а сейчас мы введем из теоремы 5.1 аппроксимационную управляемость системы Буссинеска.

5.2. Аппроксимационная управляемость системы Буссинеска.

Доказательство теоремы 1.6. Пусть задачи

\[
(m_0, \theta_0) \in (V^0(\Pi) \cap (C^{2,\alpha}(\Pi))^n) \times C^{2,\alpha}(\Pi),
(m_1, \theta_1) \in (V^0(\Pi) \cap (C^{2,\alpha}(\Pi))^n) \times C^{2,\alpha}(\Pi)
\]

и \(\varepsilon > 0 \). Требуется найти такое управление \(u \in U(\omega; 0, T) \), чтобы выполнялось неравенство (5.4) для решения \((v, \nabla p, \theta) \) задачи (5.1)-(5.3). Согласно теореме 5.1 существует управление \(u \in U(\omega; 0, T) \) такое, что выполнены равенства (5.13) для решения \((z, \nabla q, r) \) задачи (5.10)-(5.12). По функциям \(z, \nabla q, r, m, \) и построим функции

\[
z_\delta(t, x) = z \left(\frac{t}{\delta}, x \right), \quad r_\delta(t, x) = r \left(\frac{t}{\delta}, x \right), \quad m_\delta(t, x) = \frac{1}{\delta} m \left(\frac{t}{\delta}, x \right),
\]

\[
\nabla q_\delta(t, x) = \frac{1}{\delta} \nabla q \left(\frac{t}{\delta}, x \right), \quad u_\delta(t, x) = \frac{1}{\delta} u \left(\frac{t}{\delta}, x \right),
\]

где \(\delta > 0 \) — некоторый параметр. Подставим функции (5.17) в систему (5.10), (5.11) вместо соответствующих функций \(z, r, m, \nabla q, \) и. В результате получим, что функции (5.17) на цилиндре \(Q_{\delta T} = (0, \delta T) \times \Pi \) удовлетворяют системе уравнений:

\[
\partial_t z_\delta + (m_\delta, \nabla) z_\delta + (z_\delta, \nabla) m_\delta - \nabla q_\delta = u_\delta', \quad \text{div } z_\delta = 0,
\]

\[
\partial_t r_\delta + (m_\delta, \nabla) r_\delta = (u_{n+1})_\delta.
\]
При этом соотношения (5.12), (5.13) переходят в равенства

\[
\begin{align*}
(5.20) & \quad z_\delta|_{t=0} = \bar{v}_0, \quad r_\delta|_{t=0} = \bar{\theta}_0, \\
(5.21) & \quad z_\delta(\delta T, \cdot) = \bar{v}_1, \quad r_\delta(\delta T, \cdot) = \bar{\theta}_1.
\end{align*}
\]

Напомним, что, представляя решение системы (5.1), (5.2) в виде (5.6), мы свели эту систему к системе (5.10), (5.11), выбросив из системы (5.1), (5.2) несколько членов, которые мы объединили мальыми. Так как, очевидно, \(z_\delta + m_\delta, \nabla q_\delta, r_\delta, u_\delta \) не могут быть точными решениями системы (5.1), (5.2), мы будем искать точное решение этой системы в следующем виде:

\[
(5.22) \quad v = z_\delta + m_\delta + y, \quad \theta = r_\delta + \tau, \quad u = u_\delta - \chi_\omega \Delta m_\delta.
\]

Подставим (5.22) в (5.1), (5.2) и, учитывая (5.18), (5.19), (5.9), запишем полученные равенства в виде уравнений относительно \((y, \tau)\), определенных при \((t, x) \in Q_d T:\)

\[
\begin{align*}
(5.23) & \quad \partial_t y - \Delta y + (y, \nabla)(y + z_\delta + m_\delta) + \Delta z_\delta = f_1, \quad \text{div} y = 0, \\
(5.24) & \quad \partial_t \tau - \Delta \tau + (m_\delta + z_\delta + y, \nabla \tau) + (y, \nabla r_\delta) = g_1,
\end{align*}
\]

где

\[
(5.25) \quad f_1 = f + \Delta z_\delta - (z_\delta, \nabla)z_\delta - z_\delta \tau, \quad g_1 = g + \Delta r_\delta - (z_\delta, \nabla r_\delta),
\]

\[
\nabla q_2 = \nabla p - \frac{1}{\delta} \nabla q_1 \left(\frac{t}{\delta}, x \right), \quad \text{а} \quad \nabla q_1 \text{ определено в (5.9)}.
\]

Выберем начальные и конечные условия \((\bar{v}_j, \bar{\theta}_j) \in (V^1(\Pi) \cap (C^\infty(\Pi))^n) \times C^\infty(\Pi), j \in \{0, 1\}\), задачи (5.10)–(5.12) так, чтобы для них выполнялись оценки

\[
\begin{align*}
(5.26) & \quad \|\bar{v}_0 - v_0\|^2_{V^1(\Pi) \cap C^2(\Pi)} + ||\bar{\theta}_0 - \theta_0||^2_{C^2(\Pi)} < \delta^2, \\
(5.27) & \quad \|\bar{v}_1 - v_1\|^2_{V^1(\Pi) \cap C^2(\Pi)} + ||\bar{\theta}_1 - \theta_1||^2_{C^2(\Pi)} < (\varepsilon / 2)^2,
\end{align*}
\]

где \((v_0, \theta_0), (v_1, \theta_1)\) соответственно начальные и конечные условия задачи (5.1)–(5.4).4

Из (5.22), (5.3), (5.20), (5.14) следуют начальные условия для \((y, \tau)\):

\[
(5.28) \quad y|_{t=0} = v_0 - \bar{v}_0, \quad \tau|_{t=0} = \theta_0 - \bar{\theta}_0.
\]

Вследствие (5.22), (5.14), (5.21), (5.27) для доказательства (3.4) достаточно установить неравенство

\[
(5.29) \quad \|y(T\delta, \cdot)\|^2_{V^1(\Pi)} + \|\tau(T\delta, \cdot)\|^2_{H^1(\Pi)} < (\varepsilon / 2)^2.
\]

4 Отметим, что \(\bar{v}_0, \bar{\theta}_0\) определенные в (5.26), конечны, зависят от \(\delta\). Следовательно, функции \(z, \tau\), построенные в теореме 5.1, также зависят от \(\delta\). Однако в силу (5.16) нормы от \(z, \tau\) в пространстве \(C^1(0, T; C^{2, \alpha}(\Pi))\) ограничены константой, не зависящей от \(\delta\). Это замечание используется ниже в оценках (5.30)–(5.38).
Покажем, что L_2-normы правых частей f_1, g_l задачи (5.23), (5.24), (5.28) мальы при малых δ. Действительно, в силу (5.25), (5.17), (5.16) с помощью очевидных оценок и замене переменных получим:

$$
(5.30) \quad \|g_l\|_{L_2(Q_T)}^2 \leq \int_0^T \int_{\Omega} \|g(t, x)\|^2 \, dx \, dt + \delta \int_0^T \int_{\Omega} \left\| \nabla \left(\frac{t}{\delta} \cdot \cdot \cdot \right) \right\|_{H^2(\Omega)}^2 \, dx \, dt
+ \delta \int_0^T \int_{\Omega} \left\| \nabla \left(\frac{t}{\delta} \cdot \cdot \cdot \right) \right\|_{H^2(\Omega)}^2 \, dx \, dt
+ \delta \sum_{j=0}^1 \left(\|\tilde{r}_j\|_{V^2(\Omega)}^2 + \|\tilde{\theta}_j\|_{H^2(\Omega)}^2 \right) \to 0 \quad \text{при} \quad \delta \to 0.
$$

Точно так же выводится неравенство:

$$
(5.31) \quad \|f_1\|_{L_2(Q_T)}^2 \leq \int_0^T \int_{\Omega} \|f(t, \cdot)\|_{L_2(\Omega)}^2 \, dx \, dt
+ \delta \sum_{j=0}^1 \left(\|\tilde{r}_j\|_{V^2(\Omega)}^2 + \|\tilde{\theta}_j\|_{H^2(\Omega)}^2 \right) \to 0 \quad \text{при} \quad \delta \to 0.
$$

Так как правые части и начальные условия задачи (5.23), (5.24), (5.26) мальы, для доказательства существования и единственности решения достаточно получать оценки решения линеаризованной системы

$$
(5.32) \quad \partial_t y - \Delta y + (y, \nabla)(\varepsilon t + m_\delta) + (\varepsilon t + m_\delta, \nabla)y + \tau \varepsilon t - \nabla q_2 = f_1, \quad \text{div} \, y = 0,
(5.33) \quad \partial_t \tau - \Delta \tau + (m_\delta + \varepsilon t, \nabla \tau) + (y, \nabla \varepsilon t) = g_l.
$$

Умножая первое из уравнений (5.32) на y скалярно в $V^0(\Omega)$, а (5.33) на τ скалярно в $L_2(\Omega)$, складываем полученные неравенства и рассуждая, как при выводе (2.13), получим:

$$
(5.34) \quad \frac{1}{2} \frac{d}{dt} \left(\|y(t, \cdot)\|_{V^0(\Omega)}^2 + \|\tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) + \left(\|\nabla y(t, \cdot)\|_{H^0(\Omega)}^2 + \|\nabla \tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) \leq \left(\|f_1(t, \cdot)\|_{L_2(\Omega)}^2 + \|g_l(t, \cdot)\|_{L_2(\Omega)}^2 \right) + c \left(\|y(t, \cdot)\|_{V^0(\Omega)}^2 + \|\tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) \times (1 + \|z_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|r_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|m_\delta(t, \cdot)\|_{C^0(\Omega)}^2).
$$

Обозначив

$$
\alpha(t) = 1 + \|z_\delta(t, \cdot)\|_{V^0(\Omega) \cap C^2(\Omega)}^2 + \|r_\delta(t, \cdot)\|_{C^2(\Omega)}^2 + \|m_\delta(t, \cdot)\|_{C^2(\Omega)}^2,
$$

тогда имеем

$$
(5.35) \quad \frac{1}{2} \frac{d}{dt} \left(\|y(t, \cdot)\|_{V^0(\Omega)}^2 + \|\tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) + \left(\|\nabla y(t, \cdot)\|_{H^0(\Omega)}^2 + \|\nabla \tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) \leq \left(\|f_1(t, \cdot)\|_{L_2(\Omega)}^2 + \|g_l(t, \cdot)\|_{L_2(\Omega)}^2 \right) + c \left(\|y(t, \cdot)\|_{V^0(\Omega)}^2 + \|\tau(t, \cdot)\|_{H^0(\Omega)}^2 \right) \times (1 + \|z_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|r_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|m_\delta(t, \cdot)\|_{C^0(\Omega)}^2).
$$

Так как функции f_1, g_l непрерывны в $L_2(\Omega)$, получаем на интервале $[0, T]$ неравенства

$$
\|y(t, \cdot)\|_{V^0(\Omega)}^2 + \|\tau(t, \cdot)\|_{H^0(\Omega)}^2 \leq \left(\|f_1(t, \cdot)\|_{L_2(\Omega)}^2 + \|g_l(t, \cdot)\|_{L_2(\Omega)}^2 \right) T + c \left(\|y_0\|_{V^0(\Omega)}^2 + \|\tau_0\|_{H^0(\Omega)}^2 \right) T \times (1 + \|z_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|r_\delta(t, \cdot)\|_{W^1_0(\Omega)} + \|m_\delta(t, \cdot)\|_{C^0(\Omega)}^2).
$$

Отсюда следует, что решения задачи (5.23), (5.24), (5.26) существуют и единственны.
где $0 < \alpha < 1$, получим из (5.34) с помощью леммы Гронвальда следующую оценку:

$$
\|\nu(t, \cdot)\|_{V^0(\Pi)}^2 + \|\tau(t, \cdot)\|_{H^0(\Pi)}^2 \\
\leq c \left[e^{\int_0^t a(s) \, ds} \left(\|\tilde{\nu}_0 - \nu_0\|_{V^0(\Pi)}^2 + \|\tilde{\theta}_0 - \theta_0\|_{H^0(\Pi)}^2 \right) \\
+ \int_0^t e^{\int_0^s a(z_1) \, ds} \left(\|f_1(s, \cdot)\|_{L^2(\Pi)}^2 + \|g_1(s, \cdot)\|_{L^2(\Pi)}^2 \right) \, ds \right].
$$

Отметим, что

$$
\int_0^T \|m_\delta(t, \cdot)\|_{(C^{2,\alpha}(\Pi))^n} \, dt = \int_0^T \left\| m \left(\frac{t}{\delta} \right) \right\|_{(C^{2,\alpha}(\Pi))^n} \, \frac{d t}{\delta} \\
= \int_0^T \|m(t, \cdot)\|_{(C^{2,\alpha}(\Pi))^n} \, dt.
$$

Аналогично получаем оценки

$$
\int_0^T \left(\|\tilde{\tau}_\delta(t, \cdot)\|_{C^{2,\alpha}(\Pi)} + \|z_\delta(t, \cdot)\|_{(C^{2,\alpha}(\Pi))^n} \right) \, dt \\
\leq \delta \int_0^T \left(\|\tau(t, \cdot)\|_{C^{2,\alpha}(\Pi)} + \|z(t, \cdot)\|_{(C^{2,\alpha}(\Pi))^n} \right) \, dt \\
\leq \delta \sum_{j=0}^1 \left(\|\tilde{\nu}_j\|_{(C^{2,\alpha}(\Pi))^n} + \|\tilde{\theta}_j\|_{C^{2,\alpha}(\Pi)} \right).
$$

Из этих оценок следует, что при любом $t \in (0, T\delta)$

$$
\int_0^t a(s) \, ds \leq c \left(1 + \delta \sum_{j=0}^1 \left(\|\tilde{\nu}_j\|_{(C^{2,\alpha}(\Pi))^n} + \|\tilde{\theta}_j\|_{C^{2,\alpha}(\Pi)} \right) \right).
$$

Из (5.34)–(5.36) вытекает энергетическое неравенство ($t \in (0, T\delta)$):

$$
\|\nu(t, \cdot)\|_{V^1(\Pi)}^2 + \|\tau(t, \cdot)\|_{H^1(\Pi)}^2 + \int_0^t \left(\|\nabla \nu(s, \cdot)\|_{V^0(\Pi)}^2 + \|\nabla \tau(s, \cdot)\|_{H^0(\Pi)}^2 \right) \, ds \\
\leq \gamma_K \left(\|\tilde{\nu}_0 - \nu_0\|_{V^1(\Pi)}^2 + \|\tilde{\theta}_0 - \theta_0\|_{H^1(\Pi)}^2 + \int_0^t \left(\|f_1(s, \cdot)\|_{L^2(\Pi)}^2 + \|g_1(s, \cdot)\|_{L^2(\Pi)}^2 \right) \, ds \right).
$$

где функция γ_K монотонно и непрерывно зависит от K, а K – константа из (1.32). Приемлем оператор ∇ к уравнениям (5.32), (5.33), умножая скалярное в L^2 первое из полученных уравнений на $\nabla \nu$, а второе на $\nabla \tau$, рассуждая, как при выводе (5.34)–(5.37), и используя при этом (5.36), получим следующий аналог оценки (5.37):

$$
\|\nu(t, \cdot)\|_{V^2(\Pi)}^2 + \|\tau(t, \cdot)\|_{H^2(\Pi)}^2 + \int_0^t \left(\|\nabla \nu(s, \cdot)\|_{V^1(\Pi)}^2 + \|\nabla \tau(s, \cdot)\|_{H^1(\Pi)}^2 \right) \, ds \\
\leq \gamma_K \left(\|\tilde{\nu}_0 - \nu_0\|_{V^2(\Pi)}^2 + \|\tilde{\theta}_0 - \theta_0\|_{H^2(\Pi)}^2 + \int_0^t \left(\|f_1(s, \cdot)\|_{L^2(\Pi)}^2 + \|g_1(s, \cdot)\|_{L^2(\Pi)}^2 \right) \, ds \right).
$$
Точная управляемость уравнений Навье-Стокса и Буссинеска

Из оценки (5.38) методом простой итерации выводится существование решения \((y, \tau)\) нелинейной задачи (5.23), (5.24), (5.28), причем это решение удовлетворяет оценке (5.38), в которой константа \(\gamma_K\) заменена на \(2\gamma_K\). В силу (5.38), (5.26), (5.30), (5.31) можно выбрать такое малое \(\delta\), чтобы выполнялось неравенство (5.29). При этом мы полагаем \(T_{\varepsilon, K} = T_8\).

§ 6. О точной управляемости одной линейной системы

Этот параграф посвящен доказательству леммы 5.1 и теоремы 5.1.

6.1. Доказательство леммы 5.1. Докажем сначала следующее утверждение.

Лемма 6.1. Для каждого \(x_0 \in \Pi\) существует момент времени \(T = T_{x_0}\) и векторное поле \(m = m_{x_0}(t, x) \in (C^\infty([0, T_{x_0}] \times \Pi))^n\), удовлетворяющее условиям (5.5), (5.14), (5.15) с \(x(t, x_0)\), определенным в (5.15').

Доказательство. Мы используем оценку через \(M\) множество таких начальных условий \(x_0\), для которых векторных полей \(m_{x_0}\) с указанным выше свойством не существует. Так как в силу непрерывной зависимости решений обыкновенных дифференциальных уравнений от начальных условий множество \(\Pi \setminus M\) является открытым, то \(M\) — замкнутое множество. Пусть \(x_0 \in M\) и \(y_0 \in \mathbb{R} - \) такие точки, что

\[
|x_0 - y_0| = \min_{x \in M, y \in \mathbb{R}} |x - y|.
\]

Покажем, что при некотором \(\xi \in C^\infty(\partial \omega)\), для которого \(\int_{\partial \omega} \xi \, ds = 0\), решение \(q(x)\) краевой задачи Неймана

\[
\Delta q(x) = 0, \quad x \in \Pi \setminus \omega; \quad \frac{\partial q}{\partial n}\bigg|_{\partial \omega} = \xi
\]

удовлетворяет условию

\[
\left(\nabla q(x_0), y_0 - x_0\right) > 0,
\]

где \((\cdot, \cdot)\) — скалярное умножение в \(\mathbb{R}^n\), \(x_0, y_0 - \) точки из (6.1). Допустим противное, т.е. что при любом \(\xi \in C^\infty(\partial \omega)\), \(\int_{\partial \omega} \xi \, ds = 0\), для решения \(q\) задачи (6.2) справедливо равенство:

\[
\left(\nabla q(x_0), y_0 - x_0\right) = 0.
\]

Рассмотрим краевую задачу Неймана

\[
\Delta z(x) = \left(\nabla \delta(x - x_0), y_0 - x_0\right), \quad x \in \Pi \setminus \omega; \quad \frac{\partial z(x)}{\partial n}\bigg|_{\partial \omega} = 0,
\]

где \(\delta(x - x_0)\) — функция Дирака, сосредоточенная в точке \(x_0\). Необходимым условием разрешимости задачи (6.5) является равенство

\[
\int_{\Pi \setminus \omega} \left(\nabla \delta(x - x_0), y_0 - x_0\right) \mathbf{1}(x) \, dx = 0,
\]
где \(I(x) \) — функция, тождественно равная единице, а интеграл понимается как соотношение двойственности между обобщенной и пробной функциями. Равенство (6.6) очень просто и справедливо. Поэтому (см. [99, теорема 6.6]) существует решение \(z(x) \) задачи (6.5) бесконечного дифференцируемого во всех точках \(x \in \Pi \setminus \omega \) кроме \(x = x_0 \). Умножая первое из уравнений (6.5) скалярно в \(L_2(\Pi \setminus \omega) \) на решение \(q(x) \) задачи (6.2) и интегрируя по частям с учетом (6.2) и краевого условия из (6.5), получим равенство:

\[
(6.7) \quad - \int_{\partial \omega} z(x) \xi(x) \, d\sigma = \int_{\Pi \setminus \omega} \left(\nabla \delta(x - x_0), y_0 - x_0 \right) q(x) \, dx
\]

\[
= - \left(\nabla q(x_0), y_0 - x_0 \right) = 0,
\]

причем последнее равенство в (6.7) справедливо в силу (6.4). Так как в (6.7) \(\xi(x) \) — произвольная гладкая функция с нулевым средним, то

\[
z \big|_{\partial \omega} = \text{const}.
\]

Поскольку решение \(z \) задачи (6.5) определено с точностью до константы, можно считать, что

\[
(6.8) \quad z \big|_{\partial \omega} = 0.
\]

Из теоремы Холмгрена о единственности решения задачи Коши для оператора Лапласа и соотношений (6.5), (6.8) следует, что \(z(x) = 0 \) для любого \(x \in (\Pi \setminus \omega) \setminus x_0 \), и, значит, \(z(x) \) — обобщенная функция, сосредоточенная в точке \(x_0 \). Поэтому

\[
z(x) = \sum_{|\alpha| \leq N} C_\alpha D^\alpha \delta(x - x_0).
\]

Подставив это равенство в (6.5), получим:

\[
\sum_{|\alpha| \leq N} C_\alpha D^\alpha \Delta \delta(x - x_0) = \left(\nabla \delta(x - x_0), y_0 - x_0 \right).
\]

Но это равенство не может выполняться ни при каких \(N \) и \(C_\alpha \), поскольку справа стоит сумма первых произведений \(\delta \)-функции, а слева — сумма произведений порядка не меньше 2. Таким образом, доказано условие (6.3).

Пусть \(q(x) \) — решение задачи (6.2), удовлетворяющее (6.3). Продолжим \(\nabla q(x) \) с \(\Pi \setminus \omega \) на \(\Pi \) до гладкого бесконечного векторного поля, которое обозначим \(r(x) \). Такое продолжение возможно (см. [40]), поскольку в силу (6.2)

\[
\int_{\partial \omega} (\nu, \nabla q) \, d\sigma = \int_{\partial \omega} \xi \, d\sigma = 0.
\]

Ясно, что решение \(x(t) \) задачи

\[
\frac{d}{dt} x(t) = r(x(t)), \quad x \big|_{t=0} = x_0
\]
при всех $t \in (0, \varepsilon)$ и достаточно малом ε принадлежит $\Pi \setminus M$: $x(t) \in \Pi \setminus M$, $t \in (0, \varepsilon)$.
Если взять

$$
\varphi(t) \in C^\infty(0, \varepsilon), \quad 0 \leq \varphi(t) \leq 1,
$$
$$
\varphi(0) = \varphi(\varepsilon) = \varphi^{(k)}(0) = \varphi^{(k)}(\varepsilon) = 0 \quad \forall k = 1, 2, \ldots ,
$$
то для решения задачи

$$
\frac{d}{dt} x(t) = \varphi(t) r(x(t)), \quad x|_{t=0} = x_0
$$

также справедливо включение $x(\varepsilon) \in \Pi \setminus M$. Из определения множества $\Pi \setminus M$ следовательно существование $T_{x(\varepsilon)}$ и векторное поле $m_x(t, x) \in C^\infty$, удовлетворяющего условиям (5.5), (5.14) и соотношению (5.15), в котором x_0 заменено на $x(\varepsilon)$. Определим векторное поле $m_x(t, x)$ формулой

$$
m_{x_0}(t, x) = \begin{cases}
\varphi(t) r(x) & \text{при } t \in (0, \varepsilon), \\
m_x(t + \varepsilon, x) & \text{при } t \in (\varepsilon, T_{x(\varepsilon)} + \varepsilon).
\end{cases}
$$

Очевидно, справедливо соотношение (5.15), где $x(t, x_0)$ — решение задачи

$$
\frac{d}{dt} x(t, x_0) = m_{x_0}(t, x(t, x_0)), \quad x|_{t=0} = x_0.
$$

Но это противоречит включению $x_0 \in M$. Следовательно, $M = \emptyset$.

Доказательство леммы 5.1. Пусть $x_0 \in \Pi$, $T_{x_0} = $ момент времени, а $m = m_{x_0}(t, x)$ — векторное поле из формулировки леммы 6.1. В силу неперывной зависимости решений дифференциальных уравнений от начальных условий у любой точки $x_0 \in \Pi$ существует окрестность $\bar{O}(x_0)$ такая, что для решения $x(t, z)$ задачи

$$
\frac{d}{dt} x(t, z) = m_{x_0}(t, x(t, z)), \quad x(t, z)|_{t=0} = z, \quad z \in \bar{O}(x_0),
$$

выполнено соотношение $\{(t, x(t, z)) : t \in (0, T_{x_0}) \} \cap Q^2_{T_{x_0}} \neq \emptyset$, где $Q^2_{T_{x_0}} = (0, T_{x_0}) \times \omega$.

При этом существует отрезок времени конечной длины, в течение которого все кривые $x(t, z), z \in \bar{O}(x_0)$, симметрично находятся в области ω. Из покрытия $\bar{O}(x_0), x_0 \in \Pi$ выберем конечное покрытие $\bar{O}_1, \ldots, \bar{O}_K$. Через $T_i, m_i(t, x)$ обозначим момент времени и векторное поле, удовлетворяющее утверждению леммы 6.1 с $x_0 = z \in \bar{O}_i$. По $m_i(t, x)$ построим векторное поле

$$
\tilde{m}_i(t, x) = \begin{cases}
m_i(t, x) & \text{при } t \in (0, T_i), \\
-m_i(2T_i - t, x) & \text{при } t \in (T_i, 2T_i).
\end{cases}
$$

Это векторное поле, очевидно, обладает следующими свойствами: все решения $x(t, z), z \in \bar{O}_i$, задачи Коши

$$
\frac{d}{dt} x(t, z) = \tilde{m}_i(t, x(t, z)), \quad x(t, z)|_{t=0} = z
$$
находятся одновременно в течение отрезка времени Δt в области ω. При этом траектория $x(t, x_0)$, выходящая при $t = 0$ из любой точки $x_0 \in \Pi$, возвращается в момент времени $t = 2T$, в ту же точку x_0. Поэтому если определить T, $m(t, x)$ по формуле

$$T = 2 \sum_{i=1}^{K} T_i,$$

$$m(t, x) = \left\{ \tilde{m}_i \left(t - 2 \sum_{j=0}^{i-1} T_j, x \right) \right\}_{t \in \left\{ 2 \sum_{j=0}^{i-1} T_j, 2 \sum_{j=0}^{i} T_j \right\}, i = 1, \ldots, K \right\},$$

где \tilde{m}_i, определены в (6.9) и $T_0 = 0$, то эта пара удовлетворяет всем утверждениям леммы 5.1.

6.2. Доказательство теоремы 5.1. Прежде чем изучать задачу точной управляемости (5.10)–(5.12), рассмотрим задачу

(6.11) $\partial_x y + (m, \nabla) y + (y, \nabla)m = u'$,

(6.12) $\partial_t r + (m, \nabla r) = u_{n+1}$,

(6.13) $y|_{t=0} = \tilde{v}_0$, $r|_{t=0} = \tilde{\theta}_0$,

(6.14) $y|_{t=T} = \tilde{v}_1$, $r|_{t=T} = \tilde{\theta}_1$.

выбросив в (5.10) неизвестную функцию ∇q и условие бездивергентности $\text{div} \; z = 0$.

Теорема 6.1. Пусть $(0, T)$ — временную отрезок и $m(t, x) \in (C^\infty(Q))^n$ — векторное поле, построенное в лемме 5.1. Тогда для любых $\tilde{v}_0 \in (C^\infty(\Pi))^n$, $\tilde{\theta}_0 \in C^\infty(\Pi)$ существует управление $u = (u', u_{n+1}) \in U(\omega; 0, T) \cap (C^\infty(Q))^n$ и пара $(y, r) \in (C^\infty(Q))^n \times C^\infty(Q)$, удовлетворяющие соотношениям (6.11)–(6.14).

При этом для любого натурального p существует константа C_p, зависящая лишь от векторного поля $m(t, x)$ и его производных порядка не выше $p + 1$, такой, что

(6.15) $\|y\|_{C^p(0, T; (C^{p, \omega}(\Pi))^n)}^2 + \|r\|_{C^p(0, T; (C^{p, \omega}(\Pi))^n)}^2 + \|u\|_{U(\omega; 0, T) \cap C(0, T; (C^{p, \omega}(\Pi))^n)}^2 \leq C_p \left(\sum_{j=0}^{1} (\|\tilde{v}_j\|_{(C^{p, \omega}(\Pi))^n}^2 + \|\tilde{\theta}_j\|_{(C^{p, \omega}(\Pi))^n}^2) \right)$.

Доказательство. Пусть $\left\{ \tilde{\Theta}_i, i = 1, \ldots, k \right\}$ — конечное покрытие тора Π из леммы 5.1, а $\left\{ \varphi_i \right\}$ — соответствующее ему покрытие разбиения единицы.

Построим сначала решение задачи точной управляемости, заменив условия (6.13), (6.14) на следующие:

(6.16) $y|_{t=0} = \varphi_i \tilde{v}_0$, $r|_{t=0} = \varphi_i \tilde{\theta}_0$,

(6.17) $y|_{t=T} = \varphi_i \tilde{v}_1$, $r|_{t=T} = \varphi_i \tilde{\theta}_1$.

Точная управляемость уравнений Навье—Стокса и Буссинеска

Будем решать систему

\[\partial_t \rho(t, x) + (m, \nabla) \rho + (\rho, \nabla)m = 0, \quad \partial_t \beta(t, x) + (m, \nabla) \beta = 0, \]

снабженную начальными условиями \(y = \rho, \ r = \beta, \) методом характеристик. Характеристиками системы (6.18) являются решения задачи Коши

\[(6.19) \quad \frac{d}{dt} x(t, z) = m(t, x(t, z)), \]
\[(6.20) \quad x(t, z) \big|_{t=0} = z, \]

когда \(z \) пробегает \(\Pi. \) Подставляя \(x(t, z) \) вместо \(x \) в (6.18), получим задачу Коши для линейной системы обыкновенных дифференциальных уравнений. Решая эту задачу Коши, будем иметь:

\[(6.21) \quad \tilde{\rho}_i(t, x(t, z), \tilde{\beta}_i(t, x(t, z)) = e^{\int_0^t M(\tau) d\tau} \varphi_i(z) \tilde{\rho}_0(z), \quad \tilde{\beta}_i(t, x(t, z)) = \varphi_i(z) \tilde{\beta}_0(z), \]

где \(M(t) \) — матрица, сопряженная к \(\nabla_t m(t, x(t, z)). \) Эти формулы, очевидно, однозначно определяют \(\tilde{\rho}_i(t, x), \tilde{\beta}_i(t, x). \)

Согласно лемме 3.1 существует интервал времени \(\Delta_i = (\tau_i, 0, \tau_i, 1) \) такой, что при любых \(t \in \Delta, z \in \Theta_i \) справедливо включение \(x(t, z) \in \omega, \) где \(x(t, z) \) — характеристики, определенные в (6.19), (6.20). Пусть

\[(6.22) \quad \tilde{\chi}_i(t) \in C^\infty(0, T), \quad \tilde{\chi}_i(t) = \begin{cases} 1 & \text{при } t \in (0, \tau_i, 0), \\ 0 & \text{при } t \in \left(\frac{\tau_i,0 + \tau_i,1}{2}, T \right) \end{cases}. \]

Положим

\[(6.23) \quad \tilde{\gamma}_i(t, x) = \tilde{\chi}_i(t) \tilde{\rho}(t, x), \quad \tilde{\tau}_i(t, x) = \tilde{\chi}_i(t) \tilde{\beta}(t, x). \]

В силу (6.21)–(6.23) \((\tilde{\gamma}_i, \tilde{\tau}_i) \in (C^\infty(Q))^{n+1} \) и посредством этих функций сосредоточены в криволинейной трубке, образованной характеристиками (6.19), (6.20), выходящими из множества \(\Theta_i. \) Определим \(\tilde{\gamma}_i, \tilde{\tau}_i \) аналогично, решая задачу (6.18), (6.17). При этом, очевидно, характеристики задаются уравнением (6.19) с начальным условием в момент времени \(T: \)

\[(6.24) \quad x(t, z) \big|_{t=T} = z. \]

Отметим, что в силу способа построения векторного поля \(m(t, x) \), данного в лемме 3.1, множество характеристик, определенных соотношением (6.19), (6.20) \(z \in \Theta_i, \) совпадает с множеством характеристик (6.19), (6.24) \(z \in \Theta_i. \)

Решая задачу Коши (6.18), (6.17) с \(y = \alpha, \ r = \beta \) с помощью характеристик (6.19), (6.24) аналогично (6.21)–(6.23), получим:

\[(6.25) \quad \tilde{\rho}_i(t, x(t, z)) = e^{-\int_0^t M(\tau) d\tau} \varphi_i(z) \tilde{\rho}_1(z), \quad \tilde{\beta}_i(t, x(t, z)) = \varphi_i(z) \tilde{\beta}_1(z), \]
\[(6.26) \quad \tilde{\gamma}_i(t, x) = \tilde{\chi}_i(t) \rho_i(t, x), \quad \tilde{\tau}_i(t, x) = \tilde{\chi}_i(t) \beta_i(t, x). \]
где

(6.27) \[\hat{x}_i(t) \in C^\infty(0, T), \quad \hat{x}_i(t) = \begin{cases} 1 & \text{при } t \in (\tau_{i,1}, T), \\ 0 & \text{при } t \in \left(0, \frac{\tau_{i,0} + \tau_{i,1}}{2}\right). \end{cases} \]

Наконец, положим:

(6.28) \[y(t, x) = \sum_{i=1}^{K} \left(\hat{y}_i(t, x) + \hat{y}_i(t, x) \right), \quad r(t, x) = \sum_{i=1}^{K} \left(\hat{r}_i(t, x) + \hat{r}_i(t, x) \right). \]

Очевидно, пара \((y(t, x), r(t, x))\) \(\in (C^\infty(Q))^n\) удовлетворяет краевой задаче (6.11)--(6.14), причем

(6.29) \[u'(t, x) = \sum_{i=1}^{K} \left(d\hat{x}_i(t) \hat{\rho}_i(t, x) + d\hat{\xi}_i(t) \hat{\beta}_i(t, x) \right), \]

(6.30) \[u_{n+1}(t, x) = \sum_{i=1}^{K} \left(d\hat{x}_i(t) \hat{\rho}_i(t, x) + d\hat{\xi}_i(t) \hat{\beta}_i(t, x) \right). \]

Из построения функций (6.29), (6.30) следует, что

\[\text{supp } u' \subseteq Q'^{\omega}, \quad \text{supp } u_{n+1} \subseteq Q'^{\omega}. \]

Кроме того, с помощью формул (6.21)--(6.23), (6.25)--(6.30) легко вывести оценку (6.15).

Доказательство теоремы 5.1. Пусть \((y, r, u)\) -- решение задачи (6.11)--(6.14), построенное в теореме 6.1. Для векторного поля \(y\) влияние разложением Вейля

(6.31) \[y(t, x) = z(t, x) + \nabla \phi(t, x), \]

где \(z(t, x)\) -- коллинеарное векторное поле: \(\text{div} z = 0\). Наконец, что построение разложения (6.31) сводится с помощью взятия дифференцирования от обеих частей этого равенства к решению уравнения

(6.32) \[\Delta \phi(t, x) = \text{div} y(t, x). \]

Подставляя (6.31) в (6.11), получим

(6.33) \[\partial_t z + (m, \nabla)z + (z, \nabla)m + \nabla \partial_k p + (m, \nabla) \nabla p + (\nabla p, \nabla)m = u'. \]

Учитывая, что при \(x \in \Pi \setminus \omega, m = \nabla \gamma, \) будем иметь:

\[(m, \nabla) \nabla p + (\nabla p, \nabla)m = \sum_{i, k} \partial_\gamma \partial_k (\partial_k p + \partial_k p \partial_i \partial_k \gamma) = \nabla (\nabla \gamma, \nabla p). \]

Следовательно, при \(x \in \Pi \setminus \omega\)

(6.34) \[\nabla \partial_k p + (m, \nabla) \nabla p + (\nabla p, \nabla)m = \nabla (\partial_k p + (\nabla \gamma, \nabla p)) = \nabla q, \]

где \(q = \partial_k p + (\nabla \gamma, \nabla p)\). Продолжая \(q\) с \(\Pi \setminus \omega\) до гладкой функции \(q(t, x)\), определяемой на \(\Pi\) с помощью оператора продолжения \(Y\), и поставляя \(q\) в (6.33), получим:

\[\partial_t z + (m, \nabla)z + (z, \nabla)m + \nabla q = u' + u''(t, x), \]

где \(u''(t, x) \in C^\infty(Q), \text{supp } u'' \subseteq Q'^{\omega}\). Используя неравенство (6.15) и оценки Шаудера решения эллиптического уравнения (6.32) (см. [78]), легко вывести оценку (5.16).
ТОЧНАЯ УПРАВЛЯЕМОСТЬ УРАВНЕНИЙ НАВЕЕ-СТОКСА И БУССИНЕСКА

СПИСОК ЛITERАТУРЫ

