|
2-years impact-factor Math-Net.Ru of «Diskretnaya Matematika» journal, 2018
2-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2016–2017.
The table below contains the list of citations in 2018 to the papers
published in 2016–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
0.384 |
86 |
33 |
26 |
30.3% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
Yu. S. Kharin, V. A. Voloshko, E. A. Medved, “Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series”, Math. Methods Statist., 27:2 (2018), 103–118  |
→ |
Steganographic capacity for one-dimensional Markov cover} \runningtitle{Steganographic capacity for one-dimensional Markov cover} \author*[1]{Valeriy A. Voloshko} \runningauthor{V. A. Voloshko} \affil[1]{ Belarusian State University, e-mail: valeravoloshko@yandex.ru} \abstract{For shift-invariant probability measures on the set of infinite two-sided binary sequences (one-dimensional covers) we introduce the notion of capacity as a maximum portion of embedded into the cover uniformly distributed (purely random) binary sequence (message) that admits special correction of the cover restoring its distribution up to distribution of $n$-tuples (subwords of some fixed length $n$). “Special correction” is carried out using the proposed new algorithm that changes some of the cover's symbols not occupied by embedded message. The features of the introduced capacity are examined for the Markov cover. In particular, we show how capacity may be significantly increased by weakening of the standard constraint that positions for message embedding have to be chosen by independent unfair coin tosses. Experimental results are presented for correction of real steganographic covers after LSB-embedding.} \keywords{binary sequence, shift-invariant measure, steganography, capacity V. A. Voloshko Diskr. Mat., 28:1 (2016), 19–43
|
|
2. |
A. E. Balobanov, D. A. Shabanov, “O chisle nezavisimykh mnozhestv v prostykh gipergrafakh”, Matem. zametki, 103:1 (2018), 38–48  |
→ |
Independent sets in graphs A. B. Dainiak, A. A. Sapozhenko Diskr. Mat., 28:1 (2016), 44–77
|
3. |
D. S. Taletskii, D. S. Malyshev, “Derevya bez listev-dublikatov s naimenshim kolichestvom maksimalnykh nezavisimykh mnozhestv”, Diskret. matem., 30:4 (2018), 115–133  |
→ |
Independent sets in graphs A. B. Dainiak, A. A. Sapozhenko Diskr. Mat., 28:1 (2016), 44–77
|
|
4. |
K. A. Popkov, “O diagnosticheskikh testakh razmykaniya dlya kontaktnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2018, 271, 24 s.  |
→ |
Tests of contact closure for contact circuits K. A. Popkov Diskr. Mat., 28:1 (2016), 87–100
|
|
5. |
V. N. Tsypyschev, “Lower bounds on linear complexity of digital sequences products of LRS and matrix LRS over Galois ring”, Cybernetics Approaches in Intelligent Systems: Computational Methods in Systems and Software 2017, Vol. 1, Advances in Intelligent Systems and Computing, 661, Springer, 2018, 50–61  |
→ |
The second coordinate sequence of the MP-LRS over nontrivial Galois ring of an odd characteristic V. N. Tsypyschev Diskr. Mat., 28:1 (2016), 123–149
|
|
6. |
I. V. Timokhin, “Modifikatsiya metoda Rissanena v lineinoi pamyati”, Zh. vychisl. matem. i matem. fiz., 58:4 (2018), 636–644  |
→ |
Extension of the Rissanen algorithm to the factorization of block-Hankel matrices for solving systems of linear equations M. A. Cherepnev Diskr. Mat., 28:1 (2016), 150–155
|
|
7. |
A. D. Bugrov, O. V. Kamlovskii, “Parametry odnogo klassa funktsii, zadannykh na konechnom pole”, Matem. vopr. kriptogr., 9:4 (2018), 31–52  |
→ |
Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method O. V. Kamlovskii Diskr. Mat., 28:2 (2016), 27–43
|
|
8. |
Yu. L. Pavlov, “Uslovnye konfiguratsionnye grafy so sluchainym parametrom stepennogo raspredeleniya stepenei”, Matem. sb., 209:2 (2018), 120–137  |
→ |
On limit behavior of maximum vertex degree in a conditional configuration graph near critical points Yu. L. Pavlov, E. V. Feklistova Diskr. Mat., 28:2 (2016), 58–70
|
|
9. |
V. A. Taimanov, “O nekotorykh svoistvakh vektor-funktsii algebry logiki”, Diskret. matem., 30:1 (2018), 114–128  |
→ |
On bases of closed classes of vector functions of many-valued logic V. A. Taimanov Diskr. Mat., 28:2 (2016), 127–132
|
|
10. |
V. G. Mikhailov, “O svoistve reduktsii dlya chisla $H$-ekvivalentnykh tsepochek v diskretnoi tsepi Markova”, Diskret. matem., 30:1 (2018), 66–76  |
→ |
On the probability of existence of substrings with the same structure in a random sequence V. G. Mikhailov Diskr. Mat., 28:3 (2016), 97–110
|
11. |
V. I. Kruglov, “Povtoreniya tsepochek na $q$-ichnom dereve so sluchainymi metkami vershin”, Diskret. matem., 30:3 (2018), 48–67  |
→ |
On the probability of existence of substrings with the same structure in a random sequence V. G. Mikhailov Diskr. Mat., 28:3 (2016), 97–110
|
12. |
V. G. Mikhailov, “Upravlyaemaya polinomialnaya skhema razmescheniya”, Matem. vopr. kriptogr., 9:1 (2018), 75–88  |
→ |
On the probability of existence of substrings with the same structure in a random sequence V. G. Mikhailov Diskr. Mat., 28:3 (2016), 97–110
|
|
13. |
A. S. Semenov, D. A. Shabanov, “Nezavisimye mnozhestva obschego vida v sluchainykh silno razrezhennykh gipergrafakh”, Probl. peredachi inform., 54:1 (2018), 63–77  |
→ |
Independence numbers of random sparse hypergraphs A. S. Semenov, D. A. Shabanov Diskr. Mat., 28:3 (2016), 126–144
|
|
14. |
V. I. Afanasev, “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veroyatn. i ee primen., 63:3 (2018), 417–430  |
→ |
On the non-recurrent random walk in a random environment V. I. Afanasyev Diskr. Mat., 28:4 (2016), 6–28
|
|
15. |
V. V. Kochergin, A. V. Mikhailovich, “O slozhnosti funktsii mnogoznachnoi logiki v odnom beskonechnom bazise”, Diskretn. analiz i issled. oper., 25:1 (2018), 42–74  |
→ |
The minimum number of negations in circuits for systems of multi-valued functions V. V. Kochergin, A. V. Mikhailovich Diskr. Mat., 28:4 (2016), 80–90
|
|
16. |
D. S. Taletskii, “O svoistvakh resheniya rekurrentnogo uravneniya, perechislyayuschego maksimalnye nezavisimye mnozhestva
v polnykh derevyakh”, Zhurnal SVMO, 20:1 (2018), 46–54  |
→ |
On the number of maximal independent sets in complete $q$-ary trees D. S. Taletskii, D. S. Malyshev Diskr. Mat., 28:4 (2016), 139–149
|
|
17. |
A. A. Makhnev, M. Kh. Shermetova, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{96,76,1;1,19,96\}$”, Sib. elektron. matem. izv., 15 (2018), 167–174  |
→ |
On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$ K. S. Efimov, A. A. Makhnev Diskr. Mat., 29:1 (2017), 10–16
|
|
18. |
A. M. Zubkov, A. A. Serov, “Otsenki srednego razmera obraza podmnozhestva pri kompozitsii sluchainykh otobrazhenii”, Diskret. matem., 30:2 (2018), 27–36  |
→ |
Limit theorem for the size of an image of subset under compositions of random mappings A. M. Zubkov, A. A. Serov Diskr. Mat., 29:1 (2017), 17–26
|
|
19. |
A. L. Yakymiv, “O poryadke sluchainoi podstanovki s vesami tsiklov”, Teoriya veroyatn. i ee primen., 63:2 (2018), 260–283  |
→ |
Limit theorems for the logarithm of the order of a random $A$-mapping A. L. Yakymiv Diskr. Mat., 29:1 (2017), 136–155
|
|
20. |
O. P. Orlov, “Predelnye raspredeleniya maksimalnogo rasstoyaniya do blizhaishego soseda”, Diskret. matem., 30:3 (2018), 88–98  |
→ |
Limit distributions of extremal distances to the nearest neighbor A. M. Zubkov, O. P. Orlov Diskr. Mat., 29:2 (2017), 3–17
|
|
|
Total publications: |
1537 |
Scientific articles: |
1492 |
Authors: |
858 |
Citations: |
3672 |
Cited articles: |
922 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.157 |
|
2018 |
CiteScore |
0.440 |
|
2018 |
SJR |
0.325 |
|
2017 |
CiteScore |
0.210 |
|
2017 |
SNIP |
0.548 |
|
2017 |
SJR |
0.204 |
|
2016 |
CiteScore |
0.160 |
|
2016 |
SNIP |
0.557 |
|
2016 |
SJR |
0.245 |
|
2015 |
CiteScore |
0.230 |
|
2015 |
SNIP |
0.507 |
|
2015 |
IPP |
0.227 |
|
2015 |
SJR |
0.278 |
|
2014 |
CiteScore |
0.130 |
|
2014 |
SNIP |
0.664 |
|
2014 |
SJR |
0.204 |
|
2013 |
SNIP |
0.034 |
|
2013 |
IPP |
0.019 |
|
2013 |
SJR |
0.142 |
|
2012 |
SNIP |
0.333 |
|
2012 |
IPP |
0.143 |
|
2012 |
SJR |
0.238 |
|