|
2-years impact-factor Math-Net.Ru of «Moscow Mathematical Journal» journal, 2010
2-years impact-factor Math-Net.Ru of the journal in 2010 is calculated
as the number of citations in 2010 to the scientific papers published during
2008–2009.
The table below contains the list of citations in 2010 to the papers
published in 2008–2009. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
2010 |
0.836 |
61 |
51 |
22 |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
Ben-Zvi D., Francis J., Nadler D., “Integral transforms and Drinfeld centers in derived algebraic geometry”, J. Amer. Math. Soc., 23:4 (2010), 909–966  |
→ |
Equivariant Satake category and Kostant–Whittaker reduction R. V. Bezrukavnikov, M. V. Finkel'berg Mosc. Math. J., 8:1 (2008), 39–72
|
|
2. |
Müger M., “Tensor categories: a selective guided tour”, Rev. Un. Mat. Argentina, 51:1 (2010), 95–163  |
→ |
Pre-modular categories of rank 3 V. V. Ostrik Mosc. Math. J., 8:1 (2008), 111–118
|
3. |
Hong Seung-moon, Rowell E., “On the classification of the Grothendieck rings of non-self-dual modular categories”, J. Algebra, 324:5 (2010), 1000–1015  |
→ |
Pre-modular categories of rank 3 V. V. Ostrik Mosc. Math. J., 8:1 (2008), 111–118
|
|
4. |
Sun Yi, “Finite dimensional representations of the rational Cherednik algebra for $G_4$”, J. Algebra, 323:10 (2010), 2864–2887  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
5. |
Brundan J., Stroppel C., “Highest weight categories arising from Khovanov's diagram algebra. II: Koszulity”, Transform. Groups, 15:1 (2010), 1–45  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
6. |
Martino M., “The Calogero–Moser partition and Rouquier families for complex reflection groups”, J. Algebra, 323:1 (2010), 193–205  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
7. |
Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362:11 (2010), 6131–6157  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
8. |
Dunkl Ch., Griffeth S., “Generalized Jack polynomials and the representation theory of rational Cherednik algebras”, Selecta Math. (N.S.), 16:4 (2010), 791–818  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
9. |
Varagnolo M., Vasserot E., “Cyclotomic double affine Hecke algebras and affine parabolic category $\mathscr O$”, Adv. Math., 225:3 (2010), 1523–1588  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
10. |
Griffeth S., “Towards a combinatorial representation theory for the rational Cherednik algebra of type $G(r,p,n)$”, Proc. Edinb. Math. Soc. (2), 53:2 (2010), 419–445  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
11. |
Hida A., Miyachi H., “Appendix: Module correspondences in Rouquier blocks of finite general linear groups”, Representation theory of algebraic groups and quantum groups, Progr. Math., 284, Birkhäuser/Springer, New York, 2010, 81–92  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
12. |
Koenig S., “Dominant dimension and almost relatively true versions of Schur's theorem”, Milan J. Math., 78:2 (2010), 457–479  |
→ |
$q$-Schur algebras and complex reflection groups R. Rouquier Mosc. Math. J., 8:1 (2008), 119–158
|
|
13. |
Lee Kyu-Hwan, “Iwahori-Hecke algebras of $\mathrm{SL}_2$ over 2-dimensional local fields”, Canad. J. Math., 62:6 (2010), 1310–1324  |
→ |
Adelic approach to the zeta function of arithmetic schemes in dimension two I. B. Fesenko Mosc. Math. J., 8:2 (2008), 273–317
|
14. |
Fesenko I., “Analysis on arithmetic schemes. II”, J. K-Theory, 5:3 (2010), 437–557  |
→ |
Adelic approach to the zeta function of arithmetic schemes in dimension two I. B. Fesenko Mosc. Math. J., 8:2 (2008), 273–317
|
15. |
Morrow M., “Integration on Valuation Fields Over Local Fields”, Tokyo J. Math., 33:1 (2010), 235–281  |
→ |
Adelic approach to the zeta function of arithmetic schemes in dimension two I. B. Fesenko Mosc. Math. J., 8:2 (2008), 273–317
|
16. |
Morrow M., “An Explicit Approach to Residues on and Dualizing Sheaves of Arithmetic Surfaces”, N. Y. J. Math., 16 (2010), 575–627  |
→ |
Adelic approach to the zeta function of arithmetic schemes in dimension two I. B. Fesenko Mosc. Math. J., 8:2 (2008), 273–317
|
|
17. |
Abate M., “Discrete holomorphic local dynamical systems”, Holomorphic dynamical systems, Lecture Notes in Math., 1998, Springer, Berlin, 2010, 1–55  |
→ |
Modulus of analytic classification for unfoldings of resonant diffeomorphisms J. Ribón Mosc. Math. J., 8:2 (2008), 319–395
|
|
18. |
Bassa A., Beelen P., “The Hasse-Witt invariant in some towers of function fields over finite fields”, Bull. Braz. Math. Soc. (N.S.), 41:4 (2010), 567–582  |
→ |
A New Tower over Cubic Finite Fields A. Bassa, A. Garcia, H. Stichtenoth Mosc. Math. J., 8:3 (2008), 401–418
|
19. |
Stichtenoth H., “Recursive Towers of Function Fields over Finite Fields”, Arithmetic of Finite Fields, Proceedings, Lecture Notes in Computer Science, 6087, 2010, 1–6  |
→ |
A New Tower over Cubic Finite Fields A. Bassa, A. Garcia, H. Stichtenoth Mosc. Math. J., 8:3 (2008), 401–418
|
|
20. |
Esterov A., “Newton polyhedra of discriminants of projections”, Discrete Comput. Geom., 44:1 (2010), 96–148  |
→ |
On the Existence of Mixed Fiber Bodies A. Esterov Mosc. Math. J., 8:3 (2008), 433–442
|
|
|
Total publications: |
708 |
Scientific articles: |
654 |
Authors: |
854 |
Citations: |
5320 |
Cited articles: |
518 |
 |
Impact Factor Web of Science |
|
for 2018:
0.746 |
|
for 2017:
0.704 |
|
for 2016:
1.041 |
|
for 2015:
0.648 |
|
for 2014:
0.708 |
|
for 2013:
0.347 |
|
for 2012:
0.682 |
|
for 2011:
0.470 |
|
for 2010:
0.721 |
|
for 2009:
0.712 |
 |
Scopus Metrics |
|
2018 |
CiteScore |
0.760 |
|
2018 |
SJR |
0.717 |
|
2017 |
CiteScore |
0.900 |
|
2017 |
SNIP |
1.216 |
|
2017 |
SJR |
0.833 |
|
2016 |
CiteScore |
0.770 |
|
2016 |
SNIP |
1.225 |
|
2016 |
SJR |
1.014 |
|
2015 |
CiteScore |
0.610 |
|
2015 |
SNIP |
1.038 |
|
2015 |
IPP |
0.531 |
|
2015 |
SJR |
0.829 |
|
2014 |
CiteScore |
0.650 |
|
2014 |
SNIP |
1.323 |
|
2014 |
IPP |
0.667 |
|
2014 |
SJR |
1.311 |
|
2013 |
SNIP |
1.079 |
|
2013 |
IPP |
0.454 |
|
2013 |
SJR |
0.734 |
|
2012 |
SNIP |
1.109 |
|
2012 |
IPP |
0.554 |
|
2012 |
SJR |
0.745 |
|