|
5-years impact-factor Math-Net.Ru of «Teoreticheskaya i Matematicheskaya Fizika» journal, 2013
5-years impact-factor Math-Net.Ru of the journal in 2013 is calculated
as the number of citations in 2013 to the scientific papers published during
2008–2012.
The table below contains the list of citations in 2013 to the papers
published in 2008–2012. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
5-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2013 |
0.581 |
707 |
411 |
249 |
16.8% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
Vakarchuk I.O. Pastukhov V.S. Prytula R.O., “Theory of Structure and Thermodynamic Function of Liquid He-4 (Review Article)”, Low Temp. Phys., 39:9 (2013), 741–751  |
→ |
One-particle density matrix of liquid $^4He$ I. A. Vakarchuk TMF, 154:1 (2008), 9–30
|
|
2. |
N. M. Plakida, “Teoriya silnoi svyazi v mnogozonnykh sverkhprovodnikakh”, TMF, 174:2 (2013), 313–325  |
→ |
Two-time Green's functions in superconductivity theory N. M. Plakida TMF, 154:1 (2008), 129–146
|
3. |
V. V. Valkov, A. O. Zlotnikov, “Sosuschestvovanie sverkhprovodimosti i antiferromagnetizma
v tyazhelofermionnykh intermetallidakh”, TMF, 174:3 (2013), 484–503  |
→ |
Two-time Green's functions in superconductivity theory N. M. Plakida TMF, 154:1 (2008), 129–146
|
|
4. |
A. A. Slavnov, “Teoriya Yanga–Millsa kak bezmassovyi predel massivnoi kalibrovochno-invariantnoi modeli”, TMF, 175:1 (2013), 3–10  |
→ |
Local gauge-invariant infrared regularization of Yang–Mills theory A. A. Slavnov TMF, 154:2 (2008), 213–219
|
|
5. |
Shojaei-Fard A., “Motivic Dyson-Schwinger Equations”, Int. J. Mod. Phys. A, 28:20 (2013)  |
→ |
Nonlinear algebra and Bogoliubov's recursion A. Yu. Morozov, M. N. Serbin TMF, 154:2 (2008), 316–343
|
|
6. |
Didenko V.E., Skvortsov E.D., “Exact Higher-Spin Symmetry in CFT: All Correlators in Unbroken Vasiliev Theory”, J. High Energy Phys., 2013, no. 4, 158  |
→ |
Higher-spin conformal currents in Minkowski space M. A. Vasiliev, O. A. Gelfond, E. D. Skvortsov TMF, 154:2 (2008), 344–353
|
|
7. |
Behrend R.E., “Multiply-Refined Enumeration of Alternating Sign Matrices”, Adv. Math., 245 (2013), 439–499  |
→ |
Quantum Knizhnik–Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating sign matrices P. Zinn-Justin, Ph. Di Francesco TMF, 154:3 (2008), 387–408
|
8. |
Fonseca T., “On Some Polynomials Enumerating Fully Packed Loop Configurations: Evaluation at Negative Values”, Adv. Appl. Math., 51:3 (2013), 446–466  |
→ |
Quantum Knizhnik–Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating sign matrices P. Zinn-Justin, Ph. Di Francesco TMF, 154:3 (2008), 387–408
|
9. |
Hagendorf Ch., “Spin Chains with Dynamical Lattice Supersymmetry”, J. Stat. Phys., 150:4 (2013), 609–657  |
→ |
Quantum Knizhnik–Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating sign matrices P. Zinn-Justin, Ph. Di Francesco TMF, 154:3 (2008), 387–408
|
|
10. |
V. S. Bychkov, E. A. Ivanov, “$\mathcal N=4$ supermodeli Landau”, TMF, 174:1 (2013), 46–58  |
→ |
Supersymmetrizing Landau models E. A. Ivanov TMF, 154:3 (2008), 409–423
|
11. |
Goykhman M., Ivanov E., Sidorov S., “Super Landau Models on Odd Cosets”, Phys. Rev. D, 87:2 (2013), 025026  |
→ |
Supersymmetrizing Landau models E. A. Ivanov TMF, 154:3 (2008), 409–423
|
|
12. |
Marshakov A., “Tau-Functions for Quiver Gauge Theories”, J. High Energy Phys., 2013, no. 7, 068  |
→ |
On the microscopic origin of integrability in the Seiberg–Witten
theory A. V. Marshakov TMF, 154:3 (2008), 424–450
|
|
13. |
Kashani-Poor A.-K., Troost J., “Transformations of Spherical Blocks”, J. High Energy Phys., 2013, no. 10, 009  |
→ |
Multipoint correlation functions in Liouville field theory and minimal
Liouville gravity V. A. Fateev, A. V. Litvinov TMF, 154:3 (2008), 536–556
|
|
14. |
Maslov V.P., “The Role of Macroinstrument and Microinstrument and of Observable Quantities in the New Conception of Thermodynamics”, Russ. J. Math. Phys., 20:1 (2013), 68–101  |
→ |
Generalization of the Bardeen–Cooper–Schrieffer method for pair
interactions G. V. Koval', V. P. Maslov TMF, 154:3 (2008), 584–592
|
|
15. |
Chen T.-j., Fasiello M., Lim E.A., Tolley A.J., “Higher Derivative Theories with Constraints: Exorcising Ostrogradski's Ghost”, J. Cosmol. Astropart. Phys., 2013, no. 2, 042  |
→ |
The null energy condition and cosmology I. Ya. Aref'eva, I. V. Volovich TMF, 155:1 (2008), 3–12
|
|
16. |
Motegi K., Sakai K., “Vertex Models, Tasep and Grothendieck Polynomials”, J. Phys. A-Math. Theor., 46:35 (2013), 355201  |
→ |
Four-vertex model and random tilings N. M. Bogolyubov TMF, 155:1 (2008), 25–38
|
|
17. |
Elizalde E. Pozdeeva E.O. Vernov S.Yu., “Reconstruction Procedure in Nonlocal Cosmological Models”, Class. Quantum Gravity, 30:3 (2013), 035002  |
→ |
Construction of exact solutions in two-field cosmological models S. Yu. Vernov TMF, 155:1 (2008), 47–61
|
18. |
Elizalde E., Lopez-Revelles A.J., Odintsov S.D., Vernov S.Yu., “Cosmological Models with Yang-Mills Fields”, Phys. Atom. Nuclei, 76:8 (2013), 996–1003  |
→ |
Construction of exact solutions in two-field cosmological models S. Yu. Vernov TMF, 155:1 (2008), 47–61
|
19. |
Elizalde E. Pozdeeva E.O. Vernov S.Yu. Zhang Y.-l., “Cosmological Solutions of a Nonlocal Model with a Perfect Fluid”, J. Cosmol. Astropart. Phys., 2013, no. 7, 034  |
→ |
Construction of exact solutions in two-field cosmological models S. Yu. Vernov TMF, 155:1 (2008), 47–61
|
20. |
Kim H.-Ch., “Inflation as an Attractor in Scalar Cosmology”, Mod. Phys. Lett. A, 28:20 (2013), 1350089  |
→ |
Construction of exact solutions in two-field cosmological models S. Yu. Vernov TMF, 155:1 (2008), 47–61
|
|
|
Total publications: |
7880 |
Scientific articles: |
7742 |
Authors: |
4591 |
Citations: |
30097 |
Cited articles: |
5319 |
 |
Impact Factor Web of Science |
|
for 2019:
0.854 |
|
for 2018:
0.901 |
|
for 2017:
0.851 |
|
for 2016:
0.984 |
|
for 2015:
0.831 |
|
for 2014:
0.801 |
|
for 2013:
0.700 |
|
for 2012:
0.669 |
|
for 2011:
0.650 |
|
for 2010:
0.748 |
|
for 2009:
0.796 |
|
for 2008:
0.721 |
|
for 2007:
0.622 |
|
for 2006:
0.626 |
|
for 2005:
0.569 |
|
for 2004:
0.651 |
|
for 2003:
0.729 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.299 |
|
2018 |
CiteScore |
0.810 |
|
2018 |
SJR |
0.386 |
|
2017 |
CiteScore |
0.800 |
|
2017 |
SNIP |
0.865 |
|
2017 |
SJR |
0.409 |
|
2016 |
CiteScore |
0.740 |
|
2016 |
SNIP |
0.970 |
|
2016 |
SJR |
0.425 |
|
2015 |
CiteScore |
0.650 |
|
2015 |
SNIP |
0.805 |
|
2015 |
IPP |
0.658 |
|
2015 |
SJR |
0.481 |
|
2014 |
CiteScore |
0.650 |
|
2014 |
SNIP |
0.899 |
|
2014 |
IPP |
0.678 |
|
2014 |
SJR |
0.492 |
|
2013 |
SNIP |
0.800 |
|
2013 |
IPP |
0.573 |
|
2013 |
SJR |
0.494 |
|
2012 |
SNIP |
0.764 |
|
2012 |
IPP |
0.555 |
|
2012 |
SJR |
0.294 |
|