|
2-years impact-factor Math-Net.Ru of «Vladikavkazskii Matematicheskii Zhurnal» journal, 2009
2-years impact-factor Math-Net.Ru of the journal in 2009 is calculated
as the number of citations in 2009 to the scientific papers published during
2007–2008.
The table below contains the list of citations in 2009 to the papers
published in 2007–2008. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2009 |
0.316 |
57 |
18 |
12 |
27.8% |
|
N |
Citing pulication |
|
Cited paper |
|
1. |
P. V. Danchev, “Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded”, Vladikavk. matem. zhurn., 11:3 (2009), 8–9  |
→ |
A note on weakly $\aleph_1$-separable $p$-groups P. V. Danchev Vladikavkaz. Mat. Zh., 9:1 (2007), 30–37
|
2. |
Danchev P.V., “On the algebraically compact $\aleph_1$-embedding abelian groups”, Analele Stiintifice Ale Universitatii Al i Cuza Din Iasi-Serie Noua-Matematica, 55:1 (2009), 187–192  |
→ |
A note on weakly $\aleph_1$-separable $p$-groups P. V. Danchev Vladikavkaz. Mat. Zh., 9:1 (2007), 30–37
|
|
3. |
E. V. Tyurikov, “Geometricheskii analog zadachi Vekua–Goldenveizera”, Dokl. RAN, 424:4 (2009), 455–458  |
→ |
On a boundary value problem in the theory of infinitesimal bendings of a surface E. V. Tyurikov Vladikavkaz. Mat. Zh., 9:1 (2007), 62–68
|
|
4. |
Khubezhty I.A., “O beskonechnoi proektivnoi ploskosti $K_p^*$”, Izv. vuzov. Severo-Kavkazskii region. Ser.: Estestvennye nauki, 2009, № 05, 15–17 |
→ |
Solution of the Argunov-Gleason problem I. A. Khubezhty Vladikavkaz. Mat. Zh., 9:2 (2007), 26–32
|
|
5. |
Albeverio S., Ayupov Sh.A., Kudaybergenov K.K., “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Funct. Anal., 256:9 (2009), 2917–2943  |
→ |
GNS-representations of $C^*$-algebras over the ring of measurable function V. I. Chilin, I. G. Ganiev, K. K. Kudaibergenov Vladikavkaz. Mat. Zh., 9:2 (2007), 33–39
|
|
6. |
A. E. Gutman, A. V. Koptev, “Spaces of $CD_0$-functions and $CD_0$-sections of Banach bundles”, Sib. elektron. matem. izv., 6 (2009), 219–242  |
→ |
Spaces of $CD_0$-functions and doubling in the sense of Aleksandrov A. E. Gutman, A. V. Koptev Vladikavkaz. Mat. Zh., 9:3 (2007), 11–21
|
|
7. |
Dolgarev I.A., “Poverkhnosti v kommutativnoi nelineinoi geometrii 3-mernogo prostranstva-vremeni Galileya”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2009, № 1, 69–86 |
→ |
An alternative affine plane A. I. Dolgarev, I. A. Dolgarev Vladikavkaz. Mat. Zh., 9:4 (2007), 4–14
|
8. |
Dolgarev A.I., Dolgarev I.A., “Nekotorye prilozheniya galileevykh metodov”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2009, № 2, 39–59 |
→ |
An alternative affine plane A. I. Dolgarev, I. A. Dolgarev Vladikavkaz. Mat. Zh., 9:4 (2007), 4–14
|
|
9. |
V. A. Koibaev, “Transvektsii v podgruppakh polnoi lineinoi gruppy, soderzhaschikh nerasschepimyi maksimalnyi tor”, Algebra i analiz, 21:5 (2009), 70–86  |
→ |
Geometry of microweight tori N. A. Vavilov, V. V. Nesterov Vladikavkaz. Mat. Zh., 10:1 (2008), 10–23
|
10. |
V. A. Koibaev, A. V. Shilov, “Transvektsii v nadgruppakh nerasschepimogo tora”, Vladikavk. matem. zhurn., 11:4 (2009), 22–31  |
→ |
Geometry of microweight tori N. A. Vavilov, V. V. Nesterov Vladikavkaz. Mat. Zh., 10:1 (2008), 10–23
|
|
11. |
P. V. Danchev, “Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded”, Vladikavk. matem. zhurn., 11:3 (2009), 8–9  |
→ |
Quasi-complete Q-groups are bounded P. V. Danchev Vladikavkaz. Mat. Zh., 10:1 (2008), 24–26
|
|
12. |
V. A. Koibaev, “Transvektsii v podgruppakh polnoi lineinoi gruppy, soderzhaschikh nerasschepimyi maksimalnyi tor”, Algebra i analiz, 21:5 (2009), 70–86  |
→ |
Intermediate subgroups in the second-order general linear group over the field of rational functions containing a square torus V. S. Dzigoeva, V. A. Koibaev Vladikavkaz. Mat. Zh., 10:1 (2008), 27–34
|
13. |
V. A. Koibaev, A. V. Shilov, “Transvektsii v nadgruppakh nerasschepimogo tora”, Vladikavk. matem. zhurn., 11:4 (2009), 22–31  |
→ |
Intermediate subgroups in the second-order general linear group over the field of rational functions containing a square torus V. S. Dzigoeva, V. A. Koibaev Vladikavkaz. Mat. Zh., 10:1 (2008), 27–34
|
|
14. |
Levchuk D.V., “Porozhdaemost gruppy $SL_7(Z+iZ)$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vestn. Novosibirskogo gos. un-ta. Ser.: Matem., mekh., inform., 9:1 (2009), 35–38  |
→ |
On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute Ya. N. Nuzhin Vladikavkaz. Mat. Zh., 10:1 (2008), 68–74
|
15. |
D. V. Levchuk, “Porozhdaemost gruppy $SL_7(Z+iZ)$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vestn. NGU. Ser. matem., mekh., inform., 9:1 (2009), 35–38  |
→ |
On the generability of the group $PSL_n(Z)$ by three involutions, two of which commute Ya. N. Nuzhin Vladikavkaz. Mat. Zh., 10:1 (2008), 68–74
|
|
16. |
Dolgarev I.A., “Poverkhnosti v kommutativnoi nelineinoi geometrii 3-mernogo prostranstva-vremeni Galileya”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2009, № 1, 69–86 |
→ |
An alternative 2-dimensional real linear space: the Lie group of changes of bases in a space A. I. Dolgarev, I. A. Dolgarev Vladikavkaz. Mat. Zh., 10:2 (2008), 9–20
|
17. |
Dolgarev A.I., Dolgarev I.A., “Nekotorye prilozheniya galileevykh metodov”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2009, № 2, 39–59 |
→ |
An alternative 2-dimensional real linear space: the Lie group of changes of bases in a space A. I. Dolgarev, I. A. Dolgarev Vladikavkaz. Mat. Zh., 10:2 (2008), 9–20
|
|
18. |
V. P. Kondakov, “O svoistvakh dopolnyaemykh bazisnykh posledovatelnostei v blochnykh prostranstvakh tipa Kete”, Vladikavk. matem. zhurn., 11:3 (2009), 15–27  |
→ |
On classes of Köthe spaces in which every complemented subspace has a basis V. P. Kondakov, A. I. Efimov Vladikavkaz. Mat. Zh., 10:2 (2008), 21–29
|
|
Total publications: |
728 |
Scientific articles: |
638 |
Authors: |
569 |
Citations: |
872 |
Cited articles: |
305 |
|