|
2-years impact-factor Math-Net.Ru of «Vladikavkazskii Matematicheskii Zhurnal» journal, 2018
2-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2016–2017.
The table below contains the list of citations in 2018 to the papers
published in 2016–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
0.443 |
70 |
31 |
15 |
16.1% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. M. Dabboorasad, E. Yu. Emelyanov, “Unbounded convergence in the convergence vector lattices: a survey”, Vladikavk. matem. zhurn., 20:2 (2018), 49–56  |
→ |
Two measure-free versions of the Brezis–Lieb lemma E. Yu. Emelyanov, M. A. A. Marabeh Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
|
2. |
Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, “$u\tau$-convergence in locally solid vector lattices”, Positivity, 22:4 (2018), 1065–1080  |
→ |
Two measure-free versions of the Brezis–Lieb lemma E. Yu. Emelyanov, M. A. A. Marabeh Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
|
3. |
Y. A. Dabboorasad, E. Y. Emelyanov, M. A. A. Marabeh, “Um-topology in multi-normed vector lattices”, Positivity, 22:2 (2018), 653–667  |
→ |
Two measure-free versions of the Brezis–Lieb lemma E. Yu. Emelyanov, M. A. A. Marabeh Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
|
4. |
M. Marabeh, “The Brezis-Lieb lemma in convergence vector lattices”, Turk. J. Math., 42:3 (2018), 1436–1441  |
→ |
Two measure-free versions of the Brezis–Lieb lemma E. Yu. Emelyanov, M. A. A. Marabeh Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
|
5. |
A. Aydin, S. Gorokhova, H. Gul, “Nonstandard hulls of lattice-normed ordered vector spaces”, Turk. J. Math., 42:1 (2018), 155–163  |
→ |
Two measure-free versions of the Brezis–Lieb lemma E. Yu. Emelyanov, M. A. A. Marabeh Vladikavkaz. Mat. Zh., 18:1 (2016), 21–25
|
|
6. |
Z. A. Kusraeva, “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780  |
→ |
Characterization and multiplicative representation of homogeneous disjointness preserving polynomials Z. A. Kusraeva Vladikavkaz. Mat. Zh., 18:1 (2016), 51–62
|
|
7. |
R. Kh. Makaova, “Zadacha Trikomi dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya tretego poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, № 3(23), 67–75  |
→ |
The first boundary value problem for a degenerate hyperbolic equation Zh. A. Balkizov Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30
|
8. |
Zh. A. Balkizov, “Nelokalnaya kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa tretego poryadka s vyrozhdeniem tipa i poryadka v oblasti ego giperbolichnosti”, Materialy mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i fiziki» Kabardino-Balkariya, Nalchik, 17–21 maya 2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 14–24  |
→ |
The first boundary value problem for a degenerate hyperbolic equation Zh. A. Balkizov Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30
|
9. |
R. Kh. Makaova, “Kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya tretego poryadka s operatorom Allera v glavnoi chasti”, Materialy mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i fiziki» Kabardino-Balkariya, Nalchik, 17–21 maya 2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 64–71  |
→ |
The first boundary value problem for a degenerate hyperbolic equation Zh. A. Balkizov Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30
|
|
10. |
T. K. Yuldashev, “Ob odnoi nelokalnoi obratnoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Benney-Luke s vyrozhdennym yadrom”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2018, № 3, 19–41  |
→ |
Inverse problem for a third order Fredholm integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 18:2 (2016), 76–85
|
11. |
T. K. Yuldashev, “Opredelenie koeffitsienta i klassicheskaya razreshimost nelokalnoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Benni—Lyuka s vyrozhdennym yadrom”, Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 156, VINITI RAN, M., 2018, 89–102  |
→ |
Inverse problem for a third order Fredholm integro-differential equation with degenerate kernel T. K. Yuldashev Vladikavkaz. Mat. Zh., 18:2 (2016), 76–85
|
|
12. |
S. Pulmannova, “Corrigendum to Banach synaptic algebras”, Int. J. Theor. Phys., 57:12 (2018), 3772–3775  |
→ |
Reversible AJW-algebras Sh. A. Ayupov, F. N. Arzikulov Vladikavkaz. Mat. Zh., 18:3 (2016), 15–21
|
|
13. |
L. Kh. Gadzova, “Zadacha Koshi dlya obyknovennogo differentsialnogo uravneniya s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, № 3(23), 48–56  |
→ |
Neumann problem for an ordinary differential equation of fractional order L. H. Gadzova Vladikavkaz. Mat. Zh., 18:3 (2016), 22–30
|
14. |
L. Kh. Gadzova, “Boundary value problem for a linear ordinary differential equation with a fractional discretely distributed differentiation operator”, Differ. Equ., 54:2 (2018), 178–184  |
→ |
Neumann problem for an ordinary differential equation of fractional order L. H. Gadzova Vladikavkaz. Mat. Zh., 18:3 (2016), 22–30
|
15. |
L. Kh. Gadzova, “Kraevaya zadacha so smescheniem dlya lineinogo obyknovennogo differentsialnogo uravneniya s operatorom diskretno raspredelennogo
differentsirovaniya”, Materialy mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i fiziki» Kabardino-Balkariya, Nalchik, 17–21 maya 2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 25–30  |
→ |
Neumann problem for an ordinary differential equation of fractional order L. H. Gadzova Vladikavkaz. Mat. Zh., 18:3 (2016), 22–30
|
|
16. |
V. V. Bitkina, A. K. Gutnova, “Distantsionno regulyarnye lokalno $pG_{s-6}(s,t)$-grafy diametra, bolshego 3”, Tr. IMM UrO RAN, 24, № 3, 2018, 34–42  |
→ |
Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$ A. K. Gutnova, A. A. Makhnev Vladikavkaz. Mat. Zh., 18:3 (2016), 35–42
|
|
17. |
O. A. Ivanova, S. N. Melikhov, “Kommutant operatora Pomme v prostranstve tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi pryamoi”, Vladikavk. matem. zhurn., 20:3 (2018), 48–56  |
→ |
On an algebra of analytic functionals connected with a Pommiez operator O. A. Ivanova, S. N. Melikhov Vladikavkaz. Mat. Zh., 18:4 (2016), 34–40
|
18. |
P. A. Ivanov, S. N. Melikhov, “Operator Pomme v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 55–68  |
→ |
On an algebra of analytic functionals connected with a Pommiez operator O. A. Ivanova, S. N. Melikhov Vladikavkaz. Mat. Zh., 18:4 (2016), 34–40
|
|
19. |
A. Yu. Trynin, “Priznak skhodimosti protsessov Lagranzha–Shturma–Liuvillya v terminakh odnostoronnego modulya izmeneniya”, Izv. vuzov. Matem., 2018, № 8, 61–74  |
→ |
Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence A. Y. Umakhanov, I. I. Sharapudinov Vladikavkaz. Mat. Zh., 18:4 (2016), 61–70
|
20. |
A. Yu. Trynin, “Ravnomernaya skhodimost protsessov Lagranzha–Shturma–Liuvillya na odnom funktsionalnom klasse”, Ufimsk. matem. zhurn., 10:2 (2018), 93–108  |
→ |
Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence A. Y. Umakhanov, I. I. Sharapudinov Vladikavkaz. Mat. Zh., 18:4 (2016), 61–70
|
|
|
Total publications: |
728 |
Scientific articles: |
638 |
Authors: |
569 |
Citations: |
872 |
Cited articles: |
305 |
|