|
2-years impact-factor Math-Net.Ru of «Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences» journal, 2018
2-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2016–2017.
The table below contains the list of citations in 2018 to the papers
published in 2016–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
0.591 |
93 |
55 |
35 |
23.6% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
K. U. Khubiev, “Zadachi so smescheniem dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 82–90  |
→ |
Goursat problem for loaded degenerate second order hyperbolic equation with Gellerstedt operator in principal part A. H. Attaev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 7–21
|
2. |
A. Kh. Attaev, “Kharakteristicheskaya zadacha dlya nagruzhennogo vdol odnoi iz svoikh kharakteristik giperbolicheskogo uravneniya vtorogo poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, № 3(23), 14–18  |
→ |
Goursat problem for loaded degenerate second order hyperbolic equation with Gellerstedt operator in principal part A. H. Attaev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 7–21
|
3. |
A. Kh. Attaev, “Characteristic problems for a loaded equation of hyperbolic type with a wave operator in the principal part”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, eds. A. Ashyralyev, A. Lukashov, M. Sadybekov, Amer. Inst. Phys., 2018, UNSP 020022-1  |
→ |
Goursat problem for loaded degenerate second order hyperbolic equation with Gellerstedt operator in principal part A. H. Attaev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 7–21
|
4. |
K. U. Khubiev, “Kraevaya zadacha dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s vyrozhdeniem poryadka v oblasti ego giperbolichnosti”, Materialy mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i fiziki» Kabardino-Balkariya, Nalchik, 17–21 maya 2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 113–117  |
→ |
Goursat problem for loaded degenerate second order hyperbolic equation with Gellerstedt operator in principal part A. H. Attaev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 7–21
|
|
5. |
R. A. Kirzhinov, “O reshenii analoga zadachi A. A. Dezina dlya uravneniya smeshannogo tipa vtorogo poryadka metodom funktsii Grina”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, № 3(23), 36–41  |
→ |
The nonlocal A. A. Desin's problem for an equation of mixed elliptic-hyperbolic type V. A. Gushchina Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 22–32
|
|
6. |
A. G. Ezaova, “Odnoznachnaya razreshimost odnoi zadachi tipa zadachi Bitsadze–Samarskogo dlya uravneniya s razryvnymi koeffitsientami”, Vladikavk. matem. zhurn., 20:4 (2018), 50–58  |
→ |
An internal boundary value problem with the Riemann–Liouville operator for the mixed type equation of the third order O. A. Repin, S. K. Kumykova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 43–53
|
|
7. |
R. K. Tagiyev, Sh. I. Maharramli, “Variational method of solving inverse problem for a parabolic equation with integral conditions”, Proceedings of the 6Th International Conference on Control and Optimization With Industrial Applications, v. II, eds. A. Fikret, B. Tamer, Baku State Univ., Inst. Applied Mathematics, 2018, 286–288  |
→ |
On optimal control problem for the heat equation with integral boundary condition R. K. Tagiyev, V. M. Gabibov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 54–64
|
|
8. |
F. G. Khushtova, “K probleme edinstvennosti resheniya zadachi Koshi dlya uravneniya drobnoi diffuzii s operatorom Besselya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:4 (2018), 774–784  |
→ |
Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative F. G. Khushtova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 74–84
|
|
9. |
E. I. Starovoitov, D. V. Leonenko, “Bending of a sandwich beam by local loads in the temperature field”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:1 (2018), 69–83  |
→ |
A study of steady creep of layered metal-composite beams of laminated-fibrous structures
with account of their weakened resistance to the transverse shift A. P. Yankovskii Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 85–108
|
|
10. |
E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova, “Matematicheskie modeli nelineinoi vyazkouprugosti s operatorami drobnogo integro-differentsirovaniya”, Vestnik PNIPU. Mekhanika, 2018, № 2, 147–161  |
→ |
Mathematical modeling of hereditary elastically deformable body on the basis
of structural models and fractional integro-differentiation Riemann–Liouville apparatus E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194
|
11. |
A. V. Khokhlov, “Analiz svoistv krivykh polzuchesti s proizvolnoi nachalnoi stadiei nagruzheniya,
porozhdaemykh lineinoi teoriei nasledstvennosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:1 (2018), 65–95  |
→ |
Mathematical modeling of hereditary elastically deformable body on the basis
of structural models and fractional integro-differentiation Riemann–Liouville apparatus E. N. Ogorodnikov, V. P. Radchenko, L. G. Ungarova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194
|
|
12. |
K. U. Khubiev, “Kraevaya zadacha dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s vyrozhdeniem poryadka v oblasti ego giperbolichnosti”, Materialy mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i fiziki» Kabardino-Balkariya, Nalchik, 17–21 maya 2017 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, VINITI RAN, M., 2018, 113–117  |
→ |
A non-local problem for a loaded mixed-type equation with a integral operator O. Kh. Abdullayev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 220–240
|
|
13. |
A. V. Bogatov, “Zadacha s integralnym usloviem dlya odnomernogo giperbolicheskogo uravneniya”, Vestn. SamU. Estestvennonauchn. ser., 24:4 (2018), 7–12  |
→ |
A problem on longitudinal vibration of a bar with elastic fixing A. B. Beylin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 249–258
|
|
14. |
V. N. Maklakov, Ya. G. Stelmakh, “Chislennoe integrirovanie matrichnym metodom kraevykh zadach dlya lineinykh neodnorodnykh obyknovennykh
differentsialnykh uravnenii tretego poryadka s peremennymi koeffitsientami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:1 (2018), 153–183  |
→ |
The evaluation of the order of approximation of the matrix method for numerical integration
of the boundary value problems for systems of linear non-homogeneous ordinary differential equations
of the second order with variable coefficients.
Message 1. Boundary value problems with boundary conditions of the first kind V. N. Maklakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 389–409
|
|
15. |
A. Yu. Samarin, “Nonlinear dynamics of open quantum systems”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:2 (2018), 214–224  |
→ |
Nonlocal transformation of the internal quantum particle structure A. Yu. Samarin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 423–456
|
|
16. |
A. V. Khokhlov, “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya: Estestvennye nauki, 2018, № 6 (81), 92–112  |
→ |
Dual plane problems for creeping flow of power-law incompressible medium D. S. Petukhov, I. E. Keller Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 496–507
|
|
17. |
A. V. Khokhlov, “Nelineinaya model tipa Maksvella dlya reonomnykh materialov: stabilnost pri simmetrichnykh tsiklicheskikh nagruzheniyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2018, № 2, 59–63  |
→ |
Long-term strength curves generated by the nonlinear Maxwell-type model
for viscoelastoplastic materials and the linear damage rule under step loading A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 524–543
|
18. |
A. V. Khokhlov, “Cvoistva diagramm nagruzheniya i razgruzki, porozhdaemykh nelineinym opredelyayuschim sootnosheniem tipa Maksvella dlya reonomnykh materialov”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:2 (2018), 293–324  |
→ |
Long-term strength curves generated by the nonlinear Maxwell-type model
for viscoelastoplastic materials and the linear damage rule under step loading A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 524–543
|
19. |
A. V. Khokhlov, “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya: Estestvennye nauki, 2018, № 6 (81), 92–112  |
→ |
Long-term strength curves generated by the nonlinear Maxwell-type model
for viscoelastoplastic materials and the linear damage rule under step loading A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 524–543
|
20. |
A. V. Khokhlov, “Sravnitelnyi analiz svoistv krivykh polzuchesti, porozhdaemykh lineinoi i nelineinoi teoriyami nasledstvennosti pri stupenchatykh nagruzheniyakh”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:2 (2018), 27–51  |
→ |
Long-term strength curves generated by the nonlinear Maxwell-type model
for viscoelastoplastic materials and the linear damage rule under step loading A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 524–543
|
|
|
Total publications: |
1469 |
Scientific articles: |
1432 |
Authors: |
1287 |
Citations: |
2499 |
Cited articles: |
754 |
|