|
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
Most published authors of the journal |
1. |
V. P. Radchenko |
45 |
2. |
V. E. Zoteev |
28 |
3. |
V. V. Struzhanov |
25 |
4. |
A. F. Zausaev |
24 |
5. |
O. A. Repin |
20 |
6. |
L. A. Mitlina |
19 |
7. |
N. N. Popov |
19 |
8. |
M. N. Saushkin |
18 |
9. |
A. P. Yankovskii |
17 |
10. |
A. A. Andreev |
16 |
11. |
E. N. Ogorodnikov |
16 |
12. |
E. Yu. Prosviryakov |
16 |
13. |
Yu. N. Radayev |
16 |
|
40 most published authors of the journal |
|
Most cited authors of the journal |
1. |
V. P. Radchenko |
230 |
2. |
E. N. Ogorodnikov |
128 |
3. |
A. A. Andreev |
76 |
4. |
L. A. Mitlina |
76 |
5. |
V. V. Struzhanov |
71 |
6. |
O. A. Repin |
65 |
7. |
M. N. Saushkin |
63 |
8. |
T. K. Yuldashev (Iuldashev) |
63 |
9. |
E. Yu. Prosviryakov |
61 |
10. |
V. E. Zoteev |
60 |
|
40 most cited authors of the journal |
|
Most cited articles of the journal |
1. |
Refinements of integral Cauchy–Bunyakovskii inequality S. M. Sitnik Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2000, 9, 37–45 |
37 |
2. |
Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation T. K. Yuldashev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, 1(34), 56–65 |
24 |
3. |
Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation E. N. Ogorodnikov, N. S. Yashagin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, 1(18), 276–279 |
21 |
4. |
Development of physical principles and algorithms of computer modelling of basic processes of the microstructure formation by the methods of probabilistic cellular automaton A. N. Agaphonov, A. V. Volkov, S. B. Konygin, A. G. Sanoyan Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, 1(14), 99–107 |
19 |
5. |
Problem with shift for the third-order equation with discontinuous coefficients O. A. Repin, S. K. Kumykova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, 4(29), 17–25 |
18 |
6. |
Calculation procedure of a fatique point for strengthened cylindrical specimen with pressure concentrators at temperature endurances in the creep conditions V. P. Radchenko, O. S. Afanas'eva Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, 2(19), 264–268 |
18 |
7. |
Development and research in digital linear models of dissipative systems wavering V. E. Zoteev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1999, 7, 170–177 |
18 |
8. |
The mathematical model of inelastic deformation and failure of the metals by energy-type creep V. P. Radchenko Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1996, 4, 43–63 |
18 |
9. |
On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations A. I. Kozhanov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2004, 30, 63–69 |
17 |
10. |
Stability of solution of one nonlinear initial-boundary problem of aeroelasticity A. V. Ankilov, P. A. Vel'misov, Yu. A. Kazakova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, 2(31), 120–126 |
16 |
11. |
Rheological model of viscoelastic body with memory and differential equations of fractional oscillator E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, 1(22), 255–268 |
16 |
12. |
Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis A. Kh. Bikulov, A. P. Zubarev, L. V. Kaidalova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, 42, 135–140 |
16 |
13. |
Experimental study and analysis of the inelastic micro- and macro-inhomogeneity fields of AD-1 alloy V. P. Radchenko, S. A. Dudkin, M. I. Timofeev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, 16, 111–117 |
16 |
14. |
Calculation of relaxation of residual stresses in a surface-hardened layer of a cylindrical specimen under creep conditions V. P. Radchenko, M. N. Saushkin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2001, 12, 61–73 |
16 |
|
40 most cited articles of the journal |
|
Most requested articles of the journal |
|
|
1. |
On alternating and bounded solutions of one class of integral equations on the entire axis with monotonic nonlinearity Kh. A. Khachatryan, H. S. Petrosyan Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 644–662 | 40 |
2. |
On the Neuber theory of micropolar elasticity. A pseudotensor formulation V. A. Kovalev, E. V. Murashkin, Yu. N. Radayev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 752–761 | 35 |
3. |
A new class of non-helical exact solutions of the Navier–Stokes equations V. P. Kovalev, E. Yu. Prosviryakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 762–768 | 29 |
4. |
Static thermal stability of a shallow geometrically irregular shell made of orthotropic temperature-sensitive material M. V. Wilde, O. A. Myltcina, S. A. Grigoriev, G. N. Belostochny Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 769–779 | 28 |
5. |
A method for increasing the order of approximation to an arbitrary natural number by the numerical integration of boundary value problems for inhomogeneous linear ordinary differential equations of various degrees with variable coefficients by the matrix method V. N. Maklakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 718–751 | 28 |
6. |
Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation T. K. Yuldashev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, 1(34), 56–65 | 26 |
7. |
Existence of solutions to quasilinear elliptic equations in the Musielak–Orlicz–Sobolev spaces for unbounded domains L. M. Kozhevnikova, A. P. Kashnikova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 621–643 | 25 |
8. |
Non-local problems with an integral condition for third-order differential equations A. I. Kozhanov, A. V. Dyuzheva Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 607–620 | 25 |
9. |
A method for replicating exact solutions of the Euler equations for incompressible Beltrami flows G. B. Sizykh Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 790–798 | 24 |
10. |
The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body I. Yu. Mironyuk, L. A. Usov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 780–789 | 23 |
|
Total publications: |
1469 |
Scientific articles: |
1432 |
Authors: |
1287 |
Citations: |
2497 |
Cited articles: |
754 |
|