RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1998, Volume 10, Issue 6, Pages 198–233 (Mi aa1039)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Integral estimates for the spectral shift function

A. B. Pushnitskii

St. Petersburg State University, Faculty of Physics

Full text: PDF file (1372 kB)

English version:
St. Petersburg Mathematical Journal, 1999, 10:3, 1047–1070

Bibliographic databases:

Received: 24.04.1998

Citation: A. B. Pushnitskii, “Integral estimates for the spectral shift function”, Algebra i Analiz, 10:6 (1998), 198–233; St. Petersburg Math. J., 10:3 (1999), 1047–1070

Citation in format AMSBIB
\Bibitem{Pus98}
\by A.~B.~Pushnitskii
\paper Integral estimates for the spectral shift function
\jour Algebra i Analiz
\yr 1998
\vol 10
\issue 6
\pages 198--233
\mathnet{http://mi.mathnet.ru/aa1039}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1678994}
\zmath{https://zbmath.org/?q=an:0934.47012}
\transl
\jour St. Petersburg Math. J.
\yr 1999
\vol 10
\issue 3
\pages 1047--1070


Linking options:
  • http://mi.mathnet.ru/eng/aa1039
  • http://mi.mathnet.ru/eng/aa/v10/i6/p198

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pushnitski A., “Estimates for the spectral shift function of the polyharmonic operator”, J. Math. Phys., 40:11 (1999), 5578–5592  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Kostrykin V., “Concavity of eigenvalue sums and the spectral shift function”, J. Funct. Anal., 176:1 (2000), 100–114  crossref  mathscinet  zmath  isi  scopus
    3. Gesztesy F., Makarov K.A., “The $\Xi$ operator and its relation to Krein's spectral shift function”, J. Anal. Math., 81 (2000), 139–183  crossref  mathscinet  zmath  isi  scopus
    4. Pushnitski A., “Spectral shift function of the Schrodinger operator in the large coupling constant limit”, Communications in Partial Differential Equations, 25:3–4 (2000), 703–736  crossref  mathscinet  zmath  isi  scopus
    5. Combes J.M., Hislop P.D., Klopp F., Nakamura Shu, “The Wegner estimate and the integrated density of states for some random operators”, Proc. Indian Acad. Sci. Math. Sci., 112:1 (2002), 31–53  crossref  mathscinet  zmath  isi  scopus
    6. Albeverio S., Makarov K.A., Motovilov A.K., “Graph subspaces and the spectral shift function”, Canad. J. Math., 55:3 (2003), 449–503  crossref  mathscinet  zmath  isi  scopus
    7. V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Veselić I., “Existence and regularity properties of the integrated density of states of random Schrödinger operators”, Lecture Notes in Math., 1917, Springer-Verlag, Berlin, 2008, x+142 pp.  crossref  mathscinet  zmath  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:112
    Full text:58
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019