RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 2, Pages 52–73 (Mi aa112)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

Restricting the Rost invariant to the center

S. Garibaldia, A. Quéguiner-Mathievb

a Department of Mathematics & Computer Science, Emory University, Atlanta, GA, USA
b Laboratoire Analyse, Géométrie & Applications, UMR CNRS 7539 — Institut Galilée, Université Paris 13, Villetaneuse, France

Abstract: For simple simply connected algebraic groups of classical type, Merkurjev, Parimala, and Tignol gave a formula for the restriction of the Rost invariant to the torsors induced from the center of the group. This paper completes their results by giving formulas for the exceptional groups. The method is somewhat different and also recovers their formula for classical groups.

Keywords: Algebraic groups of classical type, exceptional groups, Rost invariant.

Full text: PDF file (256 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2008, 19:2, 197–213

Bibliographic databases:

MSC: 12G05
Received: 27.07.2006
Language:

Citation: S. Garibaldi, A. Quéguiner-Mathiev, “Restricting the Rost invariant to the center”, Algebra i Analiz, 19:2 (2007), 52–73; St. Petersburg Math. J., 19:2 (2008), 197–213

Citation in format AMSBIB
\Bibitem{GarQue07}
\by S.~Garibaldi, A.~Qu\'eguiner-Mathiev
\paper Restricting the Rost invariant to the center
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 52--73
\mathnet{http://mi.mathnet.ru/aa112}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333896}
\zmath{https://zbmath.org/?q=an:1209.11045}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 197--213
\crossref{https://doi.org/10.1090/S1061-0022-08-00993-X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267653200003}


Linking options:
  • http://mi.mathnet.ru/eng/aa112
  • http://mi.mathnet.ru/eng/aa/v19/i2/p52

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Garibaldi S., Gille Ph., “Algebraic groups with few subgroups”, J. Lond. Math. Soc. (2), 80:2 (2009), 405–430  crossref  mathscinet  zmath  isi
    2. Garibaldi S., Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc., 200, no. 937, 2009, xii+81 pp.  mathscinet  isi
    3. Garibaldi S., “Orthogonal involutions on algebras of degree 16 and the Killing form of $E_8$”, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., 493, Amer. Math. Soc., Providence, RI, 2009, 131–162  crossref  mathscinet  zmath  isi
    4. Garibaldi S., Semenov N., “Degree $5$ Invariant of $E_8$”, Int. Math. Res. Not. IMRN, 2010, no. 19, 3746–3762  mathscinet  zmath  isi
    5. Gille Ph., Quéguiner-Mathieu A., “Formules pour l'invariant de Rost”, Algebra Number Theory, 5:1 (2011), 1–35  crossref  mathscinet  zmath  isi
    6. Bermudez H., Ruozzi A., “Degree 3 Cohomological Invariants of Split Simple Groups That Are Neither Simply Connected Nor Adjoint”, J. Ramanujan Math. Soc., 29:4 (2014), 465–481  mathscinet  zmath  isi
    7. Garibaldi S., Petrov V., Semenov N., “Shells of Twisted Flag Varieties and the Rost Invariant”, Duke Math. J., 165:2 (2016), 285–339  crossref  mathscinet  zmath  isi  elib
    8. Garibaldi S., “$E_8$, the most exceptional group”, Bull. Amer. Math. Soc., 53:4 (2016), 643–671  crossref  mathscinet  zmath  isi  elib  scopus
    9. Merkurjev A., “Degree three cohomological invariants of semisimple groups”, J. Eur. Math. Soc., 18:3 (2016), 657–680  crossref  mathscinet  zmath  isi  scopus
    10. Garibaldi S., Merkurjev A.S., “Rost Invariant of the Center, Revisited”, Pac. J. Math., 291:2 (2017), 369–397  crossref  mathscinet  zmath  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:295
    Full text:74
    References:45
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019