|
This article is cited in 10 scientific papers (total in 10 papers)
Research Papers
Restricting the Rost invariant to the center
S. Garibaldia, A. Quéguiner-Mathievb a Department of Mathematics & Computer Science,
Emory University, Atlanta, GA, USA
b Laboratoire Analyse, Géométrie & Applications, UMR CNRS 7539 — Institut Galilée, Université Paris 13, Villetaneuse, France
Abstract:
For simple simply connected algebraic groups of classical type, Merkurjev, Parimala, and Tignol gave a formula for the restriction of the Rost invariant to the torsors induced from the center of the group. This paper completes their results by giving formulas for the exceptional groups. The method is somewhat different and also recovers their formula for classical groups.
Keywords:
Algebraic groups of classical type, exceptional groups, Rost invariant.
Full text:
PDF file (256 kB)
References:
PDF file
HTML file
English version:
St. Petersburg Mathematical Journal, 2008, 19:2, 197–213
Bibliographic databases:
MSC: 12G05 Received: 27.07.2006
Language:
Citation:
S. Garibaldi, A. Quéguiner-Mathiev, “Restricting the Rost invariant to the center”, Algebra i Analiz, 19:2 (2007), 52–73; St. Petersburg Math. J., 19:2 (2008), 197–213
Citation in format AMSBIB
\Bibitem{GarQue07}
\by S.~Garibaldi, A.~Qu\'eguiner-Mathiev
\paper Restricting the Rost invariant to the center
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 2
\pages 52--73
\mathnet{http://mi.mathnet.ru/aa112}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333896}
\zmath{https://zbmath.org/?q=an:1209.11045}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 2
\pages 197--213
\crossref{https://doi.org/10.1090/S1061-0022-08-00993-X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267653200003}
Linking options:
http://mi.mathnet.ru/eng/aa112 http://mi.mathnet.ru/eng/aa/v19/i2/p52
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Garibaldi S., Gille Ph., “Algebraic groups with few subgroups”, J. Lond. Math. Soc. (2), 80:2 (2009), 405–430
-
Garibaldi S., Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc., 200, no. 937, 2009, xii+81 pp.
-
Garibaldi S., “Orthogonal involutions on algebras of degree 16 and the Killing form of $E_8$”, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., 493, Amer. Math. Soc., Providence, RI, 2009, 131–162
-
Garibaldi S., Semenov N., “Degree $5$ Invariant of $E_8$”, Int. Math. Res. Not. IMRN, 2010, no. 19, 3746–3762
-
Gille Ph., Quéguiner-Mathieu A., “Formules pour l'invariant de Rost”, Algebra Number Theory, 5:1 (2011), 1–35
-
Bermudez H., Ruozzi A., “Degree 3 Cohomological Invariants of Split Simple Groups That Are Neither Simply Connected Nor Adjoint”, J. Ramanujan Math. Soc., 29:4 (2014), 465–481
-
Garibaldi S., Petrov V., Semenov N., “Shells of Twisted Flag Varieties and the Rost Invariant”, Duke Math. J., 165:2 (2016), 285–339
-
Garibaldi S., “$E_8$, the most exceptional group”, Bull. Amer. Math. Soc., 53:4 (2016), 643–671
-
Merkurjev A., “Degree three cohomological invariants of semisimple groups”, J. Eur. Math. Soc., 18:3 (2016), 657–680
-
Garibaldi S., Merkurjev A.S., “Rost Invariant of the Center, Revisited”, Pac. J. Math., 291:2 (2017), 369–397
|
Number of views: |
This page: | 295 | Full text: | 74 | References: | 45 | First page: | 2 |
|