|
This article is cited in 2 scientific papers (total in 2 papers)
Research Papers
Littlewood–Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0<p\le2$
N. N. Osipov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
The one-sided Littlewood–Paley inequality for pairwise disjoint rectangles in $\mathbb R^2$ is proved for the $L^p$-metric, $0<p\le2$. This result can be treated as an extension of Kislyakov and Parilov's result (they considered the one-dimensional situation) or as an extension of Journé's result (he considered disjoint parallelepipeds in $\mathbb R^n$ but his approach is only suitable for $p\in(1,2]$). We combine Kislyakov and Parilov's methods with methods “dual” to Journé's arguments.
Keywords:
Littlewood–Paley inequality, Hardy class, atomic decomposition, Journé lemma, Calderón–Zygmund operator.
Full text:
PDF file (675 kB)
References:
PDF file
HTML file
English version:
St. Petersburg Mathematical Journal, 2011, 22:2, 293–306
Bibliographic databases:
Received: 11.09.2009
Citation:
N. N. Osipov, “Littlewood–Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0<p\le2$”, Algebra i Analiz, 22:2 (2010), 164–184; St. Petersburg Math. J., 22:2 (2011), 293–306
Citation in format AMSBIB
\Bibitem{Osi10}
\by N.~N.~Osipov
\paper Littlewood--Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0<p\le2$
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 164--184
\mathnet{http://mi.mathnet.ru/aa1180}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2668127}
\zmath{https://zbmath.org/?q=an:1219.42011}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 293--306
\crossref{https://doi.org/10.1090/S1061-0022-2011-01141-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288688900005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871372089}
Linking options:
http://mi.mathnet.ru/eng/aa1180 http://mi.mathnet.ru/eng/aa/v22/i2/p164
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
N. N. Osipov, “One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0<p\le2$”, J. Math. Sci. (N. Y.), 172:2 (2011), 229–242
-
N. N. Osipov, “The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces”, Sb. Math., 205:7 (2014), 1004–1023
|
Number of views: |
This page: | 346 | Full text: | 91 | References: | 32 | First page: | 23 |
|