RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 2, Pages 185–203 (Mi aa1181)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Linearly controlled asymptotic dimension of the fundamental group of a graph-manifold

A. Smirnov

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia

Abstract: We prove the estimate $\ell-asdim \pi_1(M)\leq7$ for the linearly controlled asymptotic dimension of the fundamental group of any 3-dimensional graph-manifold $M$. As applications, we show that the universal cover $\widetilde M$ of $M$ is an absolute Lipschitz retract and admits a quasisymmetric embedding into the product of 8 metric trees.

Keywords: graph-manifold, asymptotic dimension.

Full text: PDF file (674 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2011, 22:2, 307–319

Bibliographic databases:

Received: 20.05.2009

Citation: A. Smirnov, “Linearly controlled asymptotic dimension of the fundamental group of a graph-manifold”, Algebra i Analiz, 22:2 (2010), 185–203; St. Petersburg Math. J., 22:2 (2011), 307–319

Citation in format AMSBIB
\Bibitem{Smi10}
\by A.~Smirnov
\paper Linearly controlled asymptotic dimension of the fundamental group of a~graph-manifold
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 185--203
\mathnet{http://mi.mathnet.ru/aa1181}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2668128}
\zmath{https://zbmath.org/?q=an:1227.57025}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 307--319
\crossref{https://doi.org/10.1090/S1061-0022-2011-01142-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288688900006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871384695}


Linking options:
  • http://mi.mathnet.ru/eng/aa1181
  • http://mi.mathnet.ru/eng/aa/v22/i2/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Hume D., Sisto A., “Embedding Universal Covers of Graph Manifolds in Products of Trees”, Proc. Amer. Math. Soc., 141:10 (2013), 3337–3340  crossref  mathscinet  zmath  isi  elib  scopus
    2. Hume D., “Direct Embeddings of Relatively Hyperbolic Groups With Optimal l(P) Compression Exponent”, J. Reine Angew. Math., 703 (2015), 147–172  crossref  mathscinet  zmath  isi  elib  scopus
    3. Behrstock J., Hagen M.F., Sisto A., “Asymptotic Dimension and Small-Cancellation For Hierarchically Hyperbolic Spaces and Groups”, Proc. London Math. Soc., 114:5 (2017), 890–926  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:213
    Full text:62
    References:35
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020