RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 3, Pages 32–59 (Mi aa1185)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers

N. M. Bogoliubov, K. Malyshev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The $XXZ$ Heisenberg chain is considered for two specific limits of the anisotropy parameter: $\Delta\to0$ and $\Delta\to-\infty$. The corresponding wave functions are expressed in terms of symmetric Schur functions. Certain expectation values and thermal correlation functions of the ferromagnetic string operators are calculated over the basis of $N$-particle Bethe states. The thermal correlator of the ferromagnetic string is expressed through the generating function of the lattice paths of random walks of vicious walkers. A relationship between the expectation values obtained and the generating functions of strict plane partitions in a box is discussed. An asymptotic estimate of the thermal correlator of the ferromagnetic string is obtained in the zero temperature limit. It is shown that its amplitude is related to the number of plane partitions.

Keywords: $XXZ$ Heisenberg chain, Schur functions, random walks, plane partitions.

Full text: PDF file (774 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2011, 22:3, 359–377

Bibliographic databases:

Received: 19.02.2010

Citation: N. M. Bogoliubov, K. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, Algebra i Analiz, 22:3 (2010), 32–59; St. Petersburg Math. J., 22:3 (2011), 359–377

Citation in format AMSBIB
\Bibitem{BogMal10}
\by N.~M.~Bogoliubov, K.~Malyshev
\paper The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 3
\pages 32--59
\mathnet{http://mi.mathnet.ru/aa1185}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2729939}
\zmath{https://zbmath.org/?q=an:1223.82025}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 3
\pages 359--377
\crossref{https://doi.org/10.1090/S1061-0022-2011-01146-X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000292220800003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055188811}


Linking options:
  • http://mi.mathnet.ru/eng/aa1185
  • http://mi.mathnet.ru/eng/aa/v22/i3/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Bogolyubov, K. L. Malyshev, “Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions”, Theoret. and Math. Phys., 169:2 (2011), 1517–1529  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. J. Math. Sci. (N. Y.), 200:6 (2014), 662–670  mathnet  crossref
    3. Perez-Garcia D., Tierz M., “Mapping Between the Heisenberg XX Spin Chain and Low-Energy QCD”, Phys. Rev. X, 4:2 (2014), 021050  crossref  isi  elib  scopus
    4. Bogoliubov N.M., Malyshev C., “Correlation Functions of Xxo Heisenberg Chain, Q-Binomial Determinants, and Random Walks”, Nucl. Phys. B, 879 (2014), 268–291  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. J. Math. Sci. (N. Y.), 216:1 (2016), 8–22  mathnet  crossref  mathscinet
    7. Perez-Garcia D., Tierz M., “Chern–Simons theory encoded on a spin chain”, J. Stat. Mech.-Theory Exp., 2016, 013103  crossref  mathscinet  isi  scopus
    8. Saeedian M., Zahabi A., “Phase Structure of Xx0 Spin Chain and Nonintersecting Brownian Motion”, J. Stat. Mech.-Theory Exp., 2018, 013104  crossref  mathscinet  isi  scopus
    9. N. Bogoliubov, C. Malyshev, “The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 25, K 70-letiyu M. A. Semenova-Tyan-Shanskogo, Zap. nauchn. sem. POMI, 473, POMI, SPb., 2018, 66–76  mathnet
    10. Wang N., “Young Diagrams in An N X M Box and the Kp Hierarchy”, Nucl. Phys. B, 937 (2018), 478–501  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:313
    Full text:71
    References:51
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019