RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 3, Pages 183–235 (Mi aa124)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Homogenization with corrector for a stationary periodic Maxwell system

T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: The homogenization problem in the small period limit for a stationary periodic Maxwell system in $\mathbb{R}^3$ is studied. It is assumed that the dielectric permittivity and the magnetic permeability are rapidly oscillating (depending on $\mathbf{x}/\varepsilon$), positive definite, and bounded matrix-valued functions. For all four physical fields (the strength of the electric field, the strength of the magnetic field, the electric displacement vector, and the magnetic displacement vector), uniform approximations in the $L_2(\mathbb{R}^3)$-norm are obtained with the (order-sharp) error term of order. Besides solutions of the homogenized Maxwell system, the approximations contain rapidly oscillating terms of zero order that weakly tend to zero. These terms can be interpreted as correctors of zero order.

Keywords: Periodic Maxwell operator, homogenization, effective medium, corrector.

Full text: PDF file (462 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2008, 19:3, 455–494

Bibliographic databases:

MSC: 35P20, 35Q60
Received: 08.02.2007

Citation: T. A. Suslina, “Homogenization with corrector for a stationary periodic Maxwell system”, Algebra i Analiz, 19:3 (2007), 183–235; St. Petersburg Math. J., 19:3 (2008), 455–494

Citation in format AMSBIB
\Bibitem{Sus07}
\by T.~A.~Suslina
\paper Homogenization with corrector for a~stationary periodic Maxwell system
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 183--235
\mathnet{http://mi.mathnet.ru/aa124}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2340710}
\zmath{https://zbmath.org/?q=an:1202.35319}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 455--494
\crossref{https://doi.org/10.1090/S1061-0022-08-01006-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267653300006}


Linking options:
  • http://mi.mathnet.ru/eng/aa124
  • http://mi.mathnet.ru/eng/aa/v19/i3/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928  mathnet  crossref  mathscinet  zmath  isi
    2. Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683  crossref  zmath  isi
    3. Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627  crossref  mathscinet  zmath  adsnasa  isi
    4. Holloway Ch.L. Kuester E.F., “Corrections to the Classical Continuity Boundary Conditions at the Interface of a Composite Medium”, Photonics Nanostruct., 11:4 (2013), 397–422  crossref  adsnasa  isi  elib
    5. Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158  crossref  mathscinet  zmath  isi  elib  scopus
    6. T. A. Suslina, “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti v sluchae postoyannoi magnitnoi pronitsaemosti”, Algebra i analiz, 30:3 (2018), 169–209  mathnet  elib
    7. Waurick M., “Nonlocal H-Convergence”, Calc. Var. Partial Differ. Equ., 57:6 (2018), 159  crossref  mathscinet  zmath  isi  scopus
    8. T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92  mathnet  crossref  elib
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:346
    Full text:103
    References:50
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019