Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 1, Pages 64–93 (Mi aa1317)  

This article is cited in 12 scientific papers (total in 12 papers)

Research Papers

Nonlinear parabolic equations for measures

O. A. Manita, S. V. Shaposhnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Full text: PDF file (322 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2014, 25:1, 43–62

Bibliographic databases:

Received: 12.02.2012

Citation: O. A. Manita, S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, Algebra i Analiz, 25:1 (2013), 64–93; St. Petersburg Math. J., 25:1 (2014), 43–62

Citation in format AMSBIB
\Bibitem{ManSha13}
\by O.~A.~Manita, S.~V.~Shaposhnikov
\paper Nonlinear parabolic equations for measures
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 1
\pages 64--93
\mathnet{http://mi.mathnet.ru/aa1317}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3113428}
\zmath{https://zbmath.org/?q=an:1286.35137}
\elib{https://elibrary.ru/item.asp?id=20730191}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 1
\pages 43--62
\crossref{https://doi.org/10.1090/S1061-0022-2013-01279-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000343073800003}


Linking options:
  • http://mi.mathnet.ru/eng/aa1317
  • http://mi.mathnet.ru/eng/aa/v25/i1/p64

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogachev V.I., Roeckner M., Shaposhnikov S.V., “On the Ambrosio-Figalli-Trevisan Superposition Principle For Probability Solutions to Fokker-Planck-Kolmogorov Equations”, J. Dyn. Differ. Equ.  crossref  isi
    2. J. Math. Sci. (N. Y.), 216:1 (2016), 120–135  mathnet  crossref  mathscinet
    3. O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equatio”, Nonlinear Anal., 128 (2015), 199–226  crossref  mathscinet  zmath  isi  elib  scopus
    4. O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Uniqueness of a probability solution of a nonlinear Fokker–Planck–Kolmogorov equation”, Dokl. Math., 91:2 (2015), 142–146  crossref  mathscinet  zmath  isi  elib  scopus
    5. V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Estimates of distances between transition probabilities of diffusions”, Dokl. Math., 93:2 (2016), 135–139  crossref  mathscinet  zmath  isi  elib  scopus
    6. V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300  crossref  mathscinet  zmath  isi  scopus
    7. O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Fokker–Planck–Kolmogorov equations with a partially degenerate diffusion matrix”, Dokl. Math., 96:1 (2017), 384–388  crossref  mathscinet  zmath  isi  scopus
    8. O. A. Manita, “Estimates for transportation costs along solutions to Fokker–Planck–Kolmogorov equations with dissipative drifts”, Rend. Lincei-Mat. Appl., 28:3 (2017), 601–618  crossref  mathscinet  zmath  isi  scopus
    9. E. Carlini, F. J. Silva, “On the discretization of some nonlinear Fokker–Planck–Kolmogorov equations and applications”, SIAM J. Numer. Anal., 56:4 (2018), 2148–2177  crossref  mathscinet  zmath  isi  scopus
    10. Oxana A. Manita, Maxim S. Romanov, Stanislav V. Shaposhnikov, “Estimates of distances between solutions of Fokker–Planck–Kolmogorov equations with partially degenerate diffusion matrices”, Theory Stoch. Process., 23(39):2 (2018), 41–54  mathnet
    11. Bogachev I V., Roeckner M., Shaposhnikov V S., “Convergence in Variation of Solutions of Nonlinear Fokker-Planck-Kolmogorov Equations to Stationary Measures”, J. Funct. Anal., 276:12 (2019), 3681–3713  crossref  mathscinet  zmath  isi  scopus
    12. Coghi M., Gess B., “Stochastic Nonlinear Fokker-Planck Equations”, Nonlinear Anal.-Theory Methods Appl., 187 (2019), 259–278  crossref  mathscinet  zmath  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:510
    Full text:145
    References:37
    First page:58

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021