RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 2, Pages 63–74 (Mi aa1323)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Uniform estimates near the initial state for solutions of the two-phase parabolic problem

D. E. Apushkinskaya, N. N. Uraltseva


Abstract: Optimal regularity near the initial state is established for weak solutions of the two-phase parabolic obstacle problem. The approach is sufficiently general to allow the initial data to belong to the class $C^{1,1}$.

Keywords: two-phase parabolic obstacle problem, free boundary, optimal regularity.

Full text: PDF file (252 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2014, 25:2, 195–203

Bibliographic databases:

Received: 27.09.2012
Language:

Citation: D. E. Apushkinskaya, N. N. Uraltseva, “Uniform estimates near the initial state for solutions of the two-phase parabolic problem”, Algebra i Analiz, 25:2 (2013), 63–74; St. Petersburg Math. J., 25:2 (2014), 195–203

Citation in format AMSBIB
\Bibitem{ApuUra13}
\by D.~E.~Apushkinskaya, N.~N.~Uraltseva
\paper Uniform estimates near the initial state for solutions of the two-phase parabolic problem
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 63--74
\mathnet{http://mi.mathnet.ru/aa1323}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3114850}
\zmath{https://zbmath.org/?q=an:1304.35144}
\elib{http://elibrary.ru/item.asp?id=20730197}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 195--203
\crossref{https://doi.org/10.1090/S1061-0022-2014-01285-X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000343074000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924352195}


Linking options:
  • http://mi.mathnet.ru/eng/aa1323
  • http://mi.mathnet.ru/eng/aa/v25/i2/p63

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. J. I. Díaz, T. Mingazzini, “Free boundaries touching the boundary of the domain for some reaction-diffusion problems”, Nonlinear Anal., 119 (2015), 275–294  crossref  mathscinet  zmath  isi  elib  scopus
    2. D. E. Apushkinskaya, N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interface Free Bound., 17:1 (2015), 93–115  crossref  mathscinet  zmath  isi  elib  scopus
    3. Curran M., Gurevich P., Tikhomirov S., “Recent Advances in Reaction-Diffusion Equations with Non-ideal Relays”, Control of Self-Organizing Nonlinear Systems, Understanding Complex Systems, eds. Scholl E., Klapp SH., Hovel P., Springer-Verlag Berlin, 2016, 211–234  crossref  mathscinet  isi  scopus
    4. D. Apushkinskaya, Free boundary problems. Regularity properties near the fixed boundary, Lect. Notes Math., 2218, Springer, Cham, 2018, xvii+146 pp.  crossref  mathscinet  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:226
    Full text:48
    References:38
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020