RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2013, Volume 25, Issue 2, Pages 162–192 (Mi aa1328)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in $\mathbb R^3$

C. Ortoleva, G. Perelman

Université Paris-Est Créteil, Créteil Cedex, France

Abstract: The energy critical focusing nonlinear Schrödinger equation $i\psi_t=-\Delta\psi-|\psi|^4\psi$ in $\mathbb R^3$ is considered; it is proved that, for any $\nu$ and $\alpha_0$ sufficiently small, there exist radial finite energy solutions of the form $\psi(x,t)=e^{i\alpha(t)}\lambda^{1/2}(t)W(\lambda(t)x)+e^{i\Delta t}\zeta^*+o_{\dot H^1}(1)$ as $t\to+\infty$, where $\alpha(t)=\alpha_0\ln t$, $\lambda(t)=t^\nu$, $W(x)=(1+\frac13|x|^2)^{-1/2}$ is the ground state, and $\zeta^*$ is arbitrary small in $\dot H^1$.

Keywords: energy critical focusing nonlinear Schrödinger equation, Cauchy problem, ground state, blow up.

Full text: PDF file (388 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2014, 25:2, 271–294

Bibliographic databases:

Received: 02.10.2012
Language:

Citation: C. Ortoleva, G. Perelman, “Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in $\mathbb R^3$”, Algebra i Analiz, 25:2 (2013), 162–192; St. Petersburg Math. J., 25:2 (2014), 271–294

Citation in format AMSBIB
\Bibitem{OrtPer13}
\by C.~Ortoleva, G.~Perelman
\paper Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$
\jour Algebra i Analiz
\yr 2013
\vol 25
\issue 2
\pages 162--192
\mathnet{http://mi.mathnet.ru/aa1328}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3114854}
\zmath{https://zbmath.org/?q=an:1303.35103}
\elib{http://elibrary.ru/item.asp?id=20730202}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 271--294
\crossref{https://doi.org/10.1090/S1061-0022-2014-01290-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000343074000008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924408463}


Linking options:
  • http://mi.mathnet.ru/eng/aa1328
  • http://mi.mathnet.ru/eng/aa/v25/i2/p162

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Donninger, A. Zenginoğlu, “decay for the cubic wave equation”, Anal. PDE, 7:2 (2014), 461–495  crossref  mathscinet  zmath  isi  scopus
    2. J. Krieger, J. Nahas, “Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb R^{3+1}$”, Bull. Soc. Math. France, 143:2 (2015), 339–355  crossref  mathscinet  zmath  isi  scopus
    3. J. Jendrej, “Bounds on the speed of type II blow-up for the energy critical wave equation in the radial case”, Int. Math. Res. Notices, 2016, no. 21, 6656–6688  crossref  mathscinet  isi  scopus
    4. J. Jendrej, “Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5”, J. Funct. Anal., 272:3 (2017), 866–917  crossref  mathscinet  zmath  isi  scopus
    5. J. Jendrej, “Construction of two-bubble solutions for the energy-critical NLS”, Anal. PDE, 10:8 (2017), 1923–1959  crossref  mathscinet  zmath  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:298
    Full text:59
    References:39
    First page:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020