RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find



Search through the site:
Find



Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 5, Pages 124–136 (Mi aa138)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Tame and purely wild extensions of valued fields

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A systematic and concise exposition of the basic results concerning two complementary classes (tame and purely wild) of extensions of (Henselian) valued fields is given. These notions proved to be quite useful both for the general theory and for the model theory of such fields. Along with new results, new proofs of old results are presented. Thus, in the proof of the well-known Pank theorem on the existence of a complement to the ramification group in the absolute Galois group of a Henselian valued field, the properties of maximal immediate extensions are employed instead of cohomological methods.

Keywords: Henselian valued fields, valuation ring, valuation group, ramified extension, totally unramified extension.

Full text (in Russian): PDF file (178 kB)
References (in Russian): PDF file   HTML файл

English version:
St. Petersburg Mathematical Journal, 2008, 19:5, 765–773

Bibliographic databases:

MSC: 12F15
Received: 20.04.2007

Citation: Yu. L. Ershov, “Tame and purely wild extensions of valued fields”, Algebra i Analiz, 19:5 (2007), 124–136

Citation in format AMSBIB
\Bibitem{Ers07}
\by Yu.~L.~Ershov
\paper Tame and purely wild extensions of valued fields
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 5
\pages 124--136
\mathnet{http://mi.mathnet.ru/aa138}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2381943}
\zmath{https://zbmath.org/?q=an:1206.12005}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 765--773
\crossref{http://dx.doi.org/10.1090/S1061-0022-08-01019-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267421000005}


Linking options:
  • http://mi.mathnet.ru/eng/aa138
  • http://mi.mathnet.ru/eng/aa/v19/i5/p124

    SHARE: VKontakte.ru FaceBook Twitter Ya.ru Mail.ru Liveinternet Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ю. Л. Ершов, “Теоремы о сохранении стабильности”, Алгебра и логика, 47:3 (2008), 269–287  mathnet  mathscinet  zmath; Yu. L. Ershov, “Stability preservation theorems”, Algebra and Logic, 47:3 (2008), 155–165  crossref
    2. Ю. Л. Ершов, “О гензелевых рациональных расширениях”, Докл. РАН, 422:4 (2008), 450–454  mathnet  mathscinet  zmath  elib; Yu. L. Ershov, “On Henselian Rationality of Extensions”, Dokl. Math., 78:2 (2008), 724–728  crossref  mathscinet  zmath  elib
    3. Ю. Л. Ершов, “Один критерий стабильности”, Алгебра и логика, 51:2 (2012), 193–196  mathnet  mathscinet  zmath; Yu. L. Ershov, “A stability criterion”, Algebra and Logic, 51:2 (2012), 128–130  crossref
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:201
    Full text:36
    References:9
    First page:11

     
    Contact us:
     Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014