RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 5, Pages 64–87 (Mi aa1397)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Realization and characterization of modulus of smoothness in weighted Lebesgue spaces

R. Akgünab

a Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain
b Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, ÇağIş Yerleşkesi, 10145, Balikesir, Türkiye

Abstract: A characterization is obtained for the modulus of smoothness of fractional order in the Lebesgue spaces $L_\omega^p$, $1<p<\infty$, with weights $\omega$ satisfying the Muckenhoupt $A_p$ condition. Also, a realization result and the equivalence between the modulus of smoothness and the Peetre $K$-functional are proved in $L_\omega^p$ for $1<p<\infty$ and $\omega\in A_p$.

Keywords: fractional modulus of smoothness, realization, muckenhoupt weight, characterization, $K$-functional.

Full text: PDF file (279 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2015, 26:5, 741–756

Bibliographic databases:

Received: 07.10.2013
Language:

Citation: R. Akgün, “Realization and characterization of modulus of smoothness in weighted Lebesgue spaces”, Algebra i Analiz, 26:5 (2014), 64–87; St. Petersburg Math. J., 26:5 (2015), 741–756

Citation in format AMSBIB
\Bibitem{Akg14}
\by R.~Akg\"un
\paper Realization and characterization of modulus of smoothness in weighted Lebesgue spaces
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 5
\pages 64--87
\mathnet{http://mi.mathnet.ru/aa1397}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3442846}
\elib{http://elibrary.ru/item.asp?id=22834099}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 5
\pages 741--756
\crossref{https://doi.org/10.1090/spmj/1356}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369702500002}
\elib{http://elibrary.ru/item.asp?id=24467487}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938698874}


Linking options:
  • http://mi.mathnet.ru/eng/aa1397
  • http://mi.mathnet.ru/eng/aa/v26/i5/p64

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Akgun ., “Mixed modulus of continuity in the Lebesgue spaces with Muckenhoupt weights and their properties”, Turk. J. Math., 40:6 (2016), 1169–1192  crossref  mathscinet  isi  scopus
    2. Yu. Kolomoitsev, “On moduli of smoothness and averaged differences of fractional order”, Fract. Calc. Appl. Anal., 20:4 (2017), 988–1009  crossref  mathscinet  zmath  isi  scopus
    3. R. Akgun, “Gadjieva's conjecture, $K$ -functionals, and some applications in weighted Lebesgue spaces”, Turk. J. Math., 42:3 (2018), 1484–1503  crossref  mathscinet  isi  scopus
    4. Akgun R., “Mixed Modulus of Smoothness With Muckenhoupt Weights and Approximation By Angle”, Complex Var. Elliptic Equ., 64:2 (2019), 330–351  crossref  mathscinet  zmath  isi  scopus
    5. Jafarov S.Z., “Derivatives of Trigonometric Polynomials and Converse Theorem of the Constructive Theory of Functions in Morrey Spaces”, Proc. Inst. Math. Mech., 45:1 (2019), 137–145  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:185
    Full text:40
    References:30
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019