RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 6, Pages 198–215 (Mi aa1413)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Riemann–Hilbert approach to the inverse problem for the Schrödinger operator on the half-line

R. Shterenberga, V. Sukhanovb

a Department of Mathematics, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294-1170, USA
b Department of Mathematical Physics, Institute of Physics, St. Petersburg State University, 198904, St. Petersburg, Petrodworetz, Ulyanovskaya Str., 1, Russia

Abstract: A simple yet complete construction of the inverse problem for the Schrödinger operator on the half-line is presented in terms of the Riemann–Hilbert approach.

Keywords: Schrödinger operator, inverse problem, Riemann–Hilbert problem.

Full text: PDF file (218 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2015, 26:6, 1005–1017

Bibliographic databases:

Received: 12.08.2013
Language:

Citation: R. Shterenberg, V. Sukhanov, “Riemann–Hilbert approach to the inverse problem for the Schrödinger operator on the half-line”, Algebra i Analiz, 26:6 (2014), 198–215; St. Petersburg Math. J., 26:6 (2015), 1005–1017

Citation in format AMSBIB
\Bibitem{ShtSuk14}
\by R.~Shterenberg, V.~Sukhanov
\paper Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 6
\pages 198--215
\mathnet{http://mi.mathnet.ru/aa1413}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3443261}
\elib{http://elibrary.ru/item.asp?id=22834115}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 6
\pages 1005--1017
\crossref{https://doi.org/10.1090/spmj/1372}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000369702700010}
\elib{http://elibrary.ru/item.asp?id=24961538}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944321109}


Linking options:
  • http://mi.mathnet.ru/eng/aa1413
  • http://mi.mathnet.ru/eng/aa/v26/i6/p198

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Its A., Sukhanov V., “A Riemann–Hilbert approach to the inverse problem for the Stark operator on the line”, Inverse Probl., 32:5 (2016), 055003  crossref  mathscinet  zmath  isi  elib  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:246
    Full text:42
    References:44
    First page:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019