RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 3, Pages 125–156 (Mi aa1438)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

Regularity of solutions of the fractional porous medium flow with exponent $1/2$

L. Caffarelliab, J. L. Vázquezc

a Institute for Computational Engineering and Sciences, USA
b School of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, Texas 78712-1082, USA
c Universidad Autónoma de Madrid, Departamento de Matemáticas, 28049, Madrid, Spain

Abstract: The object of study is the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is $u_t=\nabla\cdot(u\nabla(-\Delta)^{-1/2}u)$. For definiteness, the problem is posed in $\{x\in\mathbb R^N, t\in\mathbb R\}$ with nonnegative initial data $u(x,0)$ that is integrable and decays at infinity. Previous papers have established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation, as well as the boundedness of nonnegative solutions with $L^1$ data, for the more general family of equations $u_t=\nabla\cdot(u\nabla(-\Delta)^{-s}u)$, $0<s<1$.
Here, the $C^\alpha$ regularity of such weak solutions is established in the difficult fractional exponent case $s=1/2$. For the other fractional exponents $s\in(0,1)$ this Hölder regularity has been proved in an earlier paper. Continuity was under question because the nonlinear differential operator has first-order differentiation. The method combines delicate De Giorgi type estimates with iterated geometric corrections that are needed to avoid the divergence of some essential energy integrals due to fractional long-range effects.

Keywords: porous medium equation, fractional Laplacian, nonlocal diffusion operator, Hölder regularity.

Full text: PDF file (439 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2016, 27:3, 437–460

Bibliographic databases:

Received: 06.01.2015
Language:

Citation: L. Caffarelli, J. L. Vázquez, “Regularity of solutions of the fractional porous medium flow with exponent $1/2$”, Algebra i Analiz, 27:3 (2015), 125–156; St. Petersburg Math. J., 27:3 (2016), 437–460

Citation in format AMSBIB
\Bibitem{CafVaz15}
\by L.~Caffarelli, J.~L.~V\'azquez
\paper Regularity of solutions of the fractional porous medium flow with exponent~$1/2$
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 3
\pages 125--156
\mathnet{http://mi.mathnet.ru/aa1438}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3570960}
\elib{http://elibrary.ru/item.asp?id=24849893}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 3
\pages 437--460
\crossref{https://doi.org/10.1090/spmj/1397}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373930300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84963533307}


Linking options:
  • http://mi.mathnet.ru/eng/aa1438
  • http://mi.mathnet.ru/eng/aa/v27/i3/p125

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. Stan, F. del Teso, J. L. Vazquez, “Finite and infinite speed of propagation for porous medium equations with nonlocal pressure”, J. Differ. Equ., 260:2 (2016), 1154–1199  crossref  mathscinet  zmath  isi  scopus
    2. J. L. Vazquez, “The Dirichlet problem for the fractional $p$-Laplacian evolution equation”, J. Differ. Equ., 260:7 (2016), 6038–6056  crossref  mathscinet  zmath  isi  scopus
    3. J. Villa-Morales, “Instantaneous blow-up of semilinear non-autonomous equations with fractional diffusion”, Electron. J. Differ. Equ., 2017, 116  mathscinet  zmath  isi
    4. S. Lisini, E. Mainini, A. Segatti, “A gradient flow approach to the porous medium equation with fractional pressure”, Arch. Ration. Mech. Anal., 227:2 (2018), 567–606  crossref  mathscinet  zmath  isi  scopus
    5. Y. Cheng, Sh. Gao, Yu. Wu, “Exact controllability of fractional order evolution equations in Banach spaces”, Adv. Differ. Equ., 2018, 332  crossref  mathscinet  isi  scopus
    6. Quoc-Hung Nguyen, J. L. Vazquez, “Porous medium equation with nonlocal pressure in a bounded domain”, Commun. Partial Differ. Equ., 43:10 (2018), 1502–1539  crossref  mathscinet  zmath  isi  scopus
    7. D. Stan, F. Del Teso, J. L. Vazquez, “Existence of Weak Solutions For a General Porous Medium Equation With Nonlocal Pressure”, Arch. Ration. Mech. Anal., 233:1 (2019), 451–496  crossref  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:128
    Full text:26
    References:31
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019