RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2015, том 27, выпуск 4, страницы 87–166 (Mi aa1452)  

Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)

Статьи

Усреднение эллиптических операторов с периодическими коэффициентами в зависимости от спектрального параметра

Т. А. Суслина

С.-Петербургский государственный университет, физический факультет, 198504, Санкт-Петербург, Петродворец, Ульяновская, 3, Россия

Аннотация: Рассматривается дифференциальное выражение вида $b(\mathbf D)^* g(\mathbf x/\varepsilon)b(\mathbf D)$, $\varepsilon>0$, где $g(\mathbf x)$ – ограниченная и положительно определенная матрица-функция в $\mathbb R^d$, периодическая относительно некоторой решетки; $b(\mathbf D)=\sum_{l=1}^db_lD_l$ – дифференциальный оператор первого порядка с постоянными коэффициентами. На символ $b(\boldsymbol\xi)$ накладывается условие, обеспечивающее сильную эллиптичность. В пространстве $L_2(\mathbb R^d;\mathbb C^n)$ выражение $b(\mathbf D)^* g(\mathbf x/\varepsilon)b(\mathbf D)$ порождает оператор $\mathcal A_\varepsilon$. В пространстве $L_2(\mathcal O;\mathbb C^n)$, где $\mathcal O\subset\mathbb R^d$ – ограниченная область с границей класса $C^{1,1}$, рассматриваются операторы $\mathcal A_{D,\varepsilon}$ и $\mathcal A_{N,\varepsilon}$, порожденные этим выражением при условиях Дирихле или Неймана на границе. Для резольвент $(\mathcal A_\varepsilon-\zeta I)^{-1}$, $(\mathcal A_{D,\varepsilon}-\zeta I)^{-1}$, $(\mathcal A_{N,\varepsilon}-\zeta I)^{-1}$ получены аппроксимации в различных операторных нормах с оценками погрешности в зависимости от $\varepsilon$ и $\zeta$.

Ключевые слова: периодические дифференциальные операторы, задача Дирихле, задача Неймана, усреднение, эффективный оператор, корректор, операторные оценки погрешности.

Полный текст: PDF файл (654 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
St. Petersburg Mathematical Journal, 2016, 27:4, 651–708

Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 10.12.2014

Образец цитирования: Т. А. Суслина, “Усреднение эллиптических операторов с периодическими коэффициентами в зависимости от спектрального параметра”, Алгебра и анализ, 27:4 (2015), 87–166; St. Petersburg Math. J., 27:4 (2016), 651–708

Цитирование в формате AMSBIB
\RBibitem{Sus15}
\by Т.~А.~Суслина
\paper Усреднение эллиптических операторов с~периодическими коэффициентами в~зависимости от спектрального параметра
\jour Алгебра и анализ
\yr 2015
\vol 27
\issue 4
\pages 87--166
\mathnet{http://mi.mathnet.ru/aa1452}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3580194}
\elib{http://elibrary.ru/item.asp?id=24849910}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 4
\pages 651--708
\crossref{https://doi.org/10.1090/spmj/1412}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000383057300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978422585}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa1452
  • http://mi.mathnet.ru/rus/aa/v27/i4/p87

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. А. Кукушкин, Т. А. Суслина, “Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 28:1 (2016), 89–149  mathnet  mathscinet  elib; A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108  crossref  isi
    2. Meshkova Yu.M., Suslina T.A., “Two-parametric error estimates in homogenization of second-order elliptic systems in $\mathbb{R}^d$”, Appl. Anal., 95:7, SI (2016), 1413–1448  crossref  mathscinet  zmath  isi  elib  scopus
    3. Meshkova Yu.M., Suslina T.A., “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775  crossref  mathscinet  zmath  isi  elib  scopus
    4. Т. А. Суслина, “Усреднение задачи Дирихле для эллиптических уравнений высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 29:2 (2017), 139–192  mathnet  elib; T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362  crossref  isi
    5. Ю. М. Мешкова, Т. А. Суслина, “Усреднение задачи Дирихле для эллиптических и параболических систем с периодическими коэффициентами”, Функц. анализ и его прил., 51:3 (2017), 87–93  mathnet  crossref  elib; Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235  crossref  isi
    6. Ю. М. Мешкова, Т. А. Суслина, “Усреднение первой начально-краевой задачи для параболических систем: операторные оценки погрешности”, Алгебра и анализ, 29:6 (2017), 99–158  mathnet  elib
    7. Chill R. ter Elst A.F.M., “Weak and Strong Approximation of Semigroups on Hilbert Spaces”, Integr. Equ. Oper. Theory, 90:1 (2018), UNSP 9  crossref  mathscinet  isi  scopus
    8. Suslina T.A., “Homogenization of the Neumann Problem For Higher Order Elliptic Equations With Periodic Coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215  crossref  mathscinet  zmath  isi  scopus
    9. Т. А. Суслина, “Усреднение стационарной периодической системы Максвелла в ограниченной области в случае постоянной магнитной проницаемости”, Алгебра и анализ, 30:3 (2018), 169–209  mathnet  elib
    10. Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  crossref  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:175
    Полный текст:17
    Литература:29
    Первая стр.:17

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019