RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 117–149 (Mi aa1469)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Tate sequences and Fitting ideals of Iwasawa modules

C. Greithera, M. Kuriharab

a Institut für Theoretische Informatik und Mathematik, Universität der Bundeswehr, München, 85577 Neubiberg, Germany
b Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

Abstract: We consider Abelian CM extensions $L/k$ of a totally real field $k$, and we essentially determine the Fitting ideal of the dualized Iwasawa module studied by the second author in the case where only places above $p$ ramify. In doing so we recover and generalize the results mentioned above. Remarkably, our explicit description of the Fitting ideal, apart from the contribution of the usual Stickelberger element $\dot\Theta$ at infinity, only depends on the group structure of the Galois group $\operatorname{Gal}(L/k)$ and not on the specific extension $L$. From our computation it is then easy to deduce that $\dot T\dot\Theta$ is not in the Fitting ideal as soon as the $p$-part of $\operatorname{Gal}(L/k)$ is not cyclic. We need a lot of technical preparations: resolutions of the trivial module $\mathbb Z$ over a group ring, discussion of the minors of certain big matrices that arise in this context, and auxiliary results about the behavior of Fitting ideals in short exact sequences.

Keywords: Tate sequences, class groups, cohomology, totally real fields, CM-fields.

Full text: PDF file (340 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2016, 27:6, 941–965

Bibliographic databases:

Document Type: Article
Received: 15.06.2015
Language: English

Citation: C. Greither, M. Kurihara, “Tate sequences and Fitting ideals of Iwasawa modules”, Algebra i Analiz, 27:6 (2015), 117–149; St. Petersburg Math. J., 27:6 (2016), 941–965

Citation in format AMSBIB
\Bibitem{GreKur15}
\by C.~Greither, M.~Kurihara
\paper Tate sequences and Fitting ideals of Iwasawa modules
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 6
\pages 117--149
\mathnet{http://mi.mathnet.ru/aa1469}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3589224}
\elib{http://elibrary.ru/item.asp?id=26414161}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 6
\pages 941--965
\crossref{https://doi.org/10.1090/spmj/1428}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000393181800007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84999133838}


Linking options:
  • http://mi.mathnet.ru/eng/aa1469
  • http://mi.mathnet.ru/eng/aa/v27/i6/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. C. Greither, M. Kurihara, “Fitting ideals of Iwasawa modules and of the dual of class groups”, Tokyo J. Math., 39:3 (2017), 619–642  crossref  mathscinet  zmath  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:80
    Full text:6
    References:14
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019