Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2017, том 29, выпуск 1, страницы 110–144 (Mi aa1524)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Статьи

Endomorphism rings of reductions of elliptic curves and Abelian varieties

Yu. G. Zarhin

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Аннотация: Let $E$ be an elliptic curve without CM that is defined over a number field $K$. For all but finitely many non-Archimedean places $v$ of $K$ there is a reduction $E(v)$ of $E$ at $v$ that is an elliptic curve over the residue field $k(v)$ at $v$. The set of $v$'s with ordinary $E(v)$ has density 1 (Serre). For such $v$ the endomorphism ring $\operatorname{End}(E(v))$ of $E(v)$ is an order in an imaginary quadratic field.
We prove that for any pair of relatively prime positive integers $N$ and $M$ there are infinitely many non-Archimedean places $v$ of $K$ such that the discriminant $\boldsymbol\Delta(\mathbf v)$ of $\operatorname{End}(E(v))$ is divisible by $N$ and the ratio $\frac{\boldsymbol\Delta(\mathbf v)}N$ is relatively prime to $NM$. We also discuss similar questions for reductions of Abelian varieties.
The subject of this paper was inspired by an exercise in Serre's “Abelian $\ell$-adic representations and elliptic curves” and questions of Mihran Papikian and Alina Cojocaru.

Ключевые слова: absolute Galois group, Abelian variety, general linear group, Tate module, Frobenius element.

Финансовая поддержка Номер гранта
Simons Foundation #246625
This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri Zarkhin).


Полный текст: PDF файл (343 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
St. Petersburg Mathematical Journal, 2018, 29:1, 81–106

Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 10.02.2016
Язык публикации: английский

Образец цитирования: Yu. G. Zarhin, “Endomorphism rings of reductions of elliptic curves and Abelian varieties”, Алгебра и анализ, 29:1 (2017), 110–144; St. Petersburg Math. J., 29:1 (2018), 81–106

Цитирование в формате AMSBIB
\RBibitem{Zar17}
\by Yu.~G.~Zarhin
\paper Endomorphism rings of reductions of elliptic curves and Abelian varieties
\jour Алгебра и анализ
\yr 2017
\vol 29
\issue 1
\pages 110--144
\mathnet{http://mi.mathnet.ru/aa1524}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3660686}
\elib{https://elibrary.ru/item.asp?id=28960973}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 1
\pages 81--106
\crossref{https://doi.org/10.1090/spmj/1483}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000419174700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040089636}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa1524
  • http://mi.mathnet.ru/rus/aa/v29/i1/p110

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. D. Lombardo, “Computing the geometric endomorphism ring of a genus-2 Jacobian”, Math. Comput., 88:316 (2019), 889–929  crossref  mathscinet  zmath  isi  scopus
    2. S. Garai, M. Papikian, “Endomorphism rings of reductions of Drinfeld modules”, J. Number Theory, 212 (2020), 18–39  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:192
    Полный текст:36
    Литература:20
    Первая стр.:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021