RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 6, Pages 35–98 (Mi aa1562)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Homotopy theory of normed sets I. Basic constructions

N. V. Durov

St. Petersburg Department of the Steklov Mathematical Institute, 27 Fontanka emb., 191023, St. Petersburg, Russia

Abstract: We would like to present an extension of the theory of $\mathbb R_{\ge0}$-graded (or “$\mathbb R_{\ge0}$-normed”) sets and monads over them as defined in recent paper by Frederic Paugam.
We extend the theory of graded sets in three directions. First of all, we show that $\mathbb R_{\ge0}$ can be replaced with more or less arbitrary (partially) ordered commutative monoid $\Delta$, yielding a symmetric monoidal category $\mathcal N_\Delta$ of $\Delta$-normed sets. However, this category fails to be closed under some important categorical constructions. We deal with this problems by embedding $\mathcal N_\Delta$ into a larger category $\mathrm{Sets}^\Delta$ of $\Delta$-graded sets.
Next, we show that most constructions make sense with $\Delta$ replaced by a small symmetric monoidal category $\mathcal I$. In particular, we have a symmetric monoidal category $\mathrm{Sets}^\mathcal I$ of $\mathcal I$-graded sets.
We use these foundations for two further developments: a homotopy theory for normed and graded sets, essentially consisting of a well-behaved combinatorial model structure on simplicial $\mathcal I$-graded sets and a theory of $\Delta$-graded monads. This material will be exposed elsewhere.

Keywords: normed sets, normed groups, norms, normed algebraic structures, graded algebraic structures, filtered algebraic structures, fuzzy sets, linear logic, presheaf categories, finitary monads, generalized rings, metric spaces, model categories, homotopy categories, higher categories.

Full text: PDF file (527 kB)
First page: PDF file
References: PDF file   HTML file

Document Type: Article
Received: 09.09.2017
Language: English

Citation: N. V. Durov, “Homotopy theory of normed sets I. Basic constructions”, Algebra i Analiz, 29:6 (2017), 35–98

Citation in format AMSBIB
\Bibitem{Dur17}
\by N.~V.~Durov
\paper Homotopy theory of normed sets~I. Basic constructions
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 6
\pages 35--98
\mathnet{http://mi.mathnet.ru/aa1562}
\elib{http://elibrary.ru/item.asp?id=30381767}


Linking options:
  • http://mi.mathnet.ru/eng/aa1562
  • http://mi.mathnet.ru/eng/aa/v29/i6/p35

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. N. V. Durov, “Homotopy theory of normed sets II. Model categories”, Algebra i analiz, 30:1 (2018), 32–95  mathnet  elib
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:254
    References:22
    First page:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019