RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 3, Pages 40–58 (Mi aa450)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

On some developments of the $\overline\partial$-dressing method

L. V. Bogdanov, V. E. Zakharov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies

Abstract: Some developments of the $\overline\partial$-dressing method concerning an algebraic scheme of constructing integrable equations and construction of solutions with special properties are considered. It is demonstrated how the matrix $\mathbf{KP}$ equation appears from the scalar dressing and, more generally, how to construct the integrable system corresponding to an arbitrary triad of polynomials. Using the nonlocal $\overline\partial$-problem approach in $(2+1)$ dimensions, it is shown that the $\overline\partial$-problem with a shift and (for decreasing solutions) the Riemann problem with a shift naturally arise in $(1+1)$ dimensions. The Boussinesq equation and the first order relativistically-invariant systems are investigated. The developed approach allows one also to investigate the structure of the continuous spectrum and the inverse scattering problem for an arbitrary order ordinary differential operator on the infinite line.

Keywords: Inverse scattering problem method, the dressing method, $\bar\partial$-problem, the Riemann problem.

Full text: PDF file (1562 kB)

English version:
St. Petersburg Mathematical Journal, 1995, 6:3, 475–493

Bibliographic databases:

Received: 13.04.1994
Language: English

Citation: L. V. Bogdanov, V. E. Zakharov, “On some developments of the $\overline\partial$-dressing method”, Algebra i Analiz, 6:3 (1994), 40–58; St. Petersburg Math. J., 6:3 (1995), 475–493

Citation in format AMSBIB
\Bibitem{BogZak94}
\by L.~V.~Bogdanov, V.~E.~Zakharov
\paper On some developments of the $\overline\partial$-dressing method
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 3
\pages 40--58
\mathnet{http://mi.mathnet.ru/aa450}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1301829}
\zmath{https://zbmath.org/?q=an:0839.35115|0813.35102}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 3
\pages 475--493


Linking options:
  • http://mi.mathnet.ru/eng/aa450
  • http://mi.mathnet.ru/eng/aa/v6/i3/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum

    This publication is cited in the following articles:
    1. Konopelchenko, BG, “Singular sector of the Kadomtsev-Petviashvili hierarchy, (partial derivative)over-bar operators of nonzero index, and associated integrable systems”, Journal of Mathematical Physics, 41:1 (2000), 385  crossref  mathscinet  zmath  adsnasa  isi
    2. Bogdanov, L, “The Boussinesq equation revisited”, Physica D-Nonlinear Phenomena, 165:3–4 (2002), 137  crossref  mathscinet  zmath  adsnasa  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:276
    Full text:91
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019