RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 6, Pages 128–153 (Mi aa485)  

Research Papers

Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity

M. Fuchsa, G. A. Sereginb

a Saarland University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We consider the model problem of minimizing the functional $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h(\operatorname{det}\nabla u)dx$ where $u:\mathbb R^2\supset\Omega\to\mathbb R^2$ and $h:\mathbb R\to[0,\infty]$ denotes a function which is convex and smooth on $(0,\infty)$, $\operatorname{lim}_{t\downarrow 0}h(t)=+\infty$ and $h\equiv+\infty$ on $(-\infty,0]$. In particular, we show that it is possible to introduce an approximation $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h_{\delta}(\operatorname{det}\nabla u)dx$ for the energy whose minimizers $u_{\delta}$ are of class $C^1$ on some open subset $\Omega_{\delta}$ of $\Omega$ and converge strongly in $H^{1,2}(\Omega,\mathbb R^2)$ to a minimizer и of the original problem. Moreover, we have control on the measure of the exceptional set in the sense that $|\Omega-\Omega_{\delta}|\to 0$ as $\delta\to 0$.

Keywords: Nonlinear elasticity, partial regularity, approximation.

Full text: PDF file (1451 kB)

English version:
St. Petersburg Mathematical Journal, 1995, 6:6, 1229–1248

Bibliographic databases:

Received: 25.05.1994
Language:

Citation: M. Fuchs, G. A. Seregin, “Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity”, Algebra i Analiz, 6:6 (1994), 128–153; St. Petersburg Math. J., 6:6 (1995), 1229–1248

Citation in format AMSBIB
\Bibitem{FucSer94}
\by M.~Fuchs, G.~A.~Seregin
\paper Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 6
\pages 128--153
\mathnet{http://mi.mathnet.ru/aa485}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1322123}
\zmath{https://zbmath.org/?q=an:0839.73009|0827.73010}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 6
\pages 1229--1248


Linking options:
  • http://mi.mathnet.ru/eng/aa485
  • http://mi.mathnet.ru/eng/aa/v6/i6/p128

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:198
    Full text:76
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019