RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 3, Pages 18–46 (Mi aa512)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum

V. G. Zhuravlev

Vladimir State Pedagogical University

Abstract: The representations $\overrightarrow{N}_1+\overrightarrow{N}_2=D$ of a natural number $D$ as the sum of two even-Fibonacci numbers $\overrightarrow{N}_i=F_1 \circ N_i$, where $\circ$ is the circular Fibonacci multiplication, are considered. For the number $s(D)$ of solutions, the asymptotic formula $s(D)=c(D)D+r(D)$ is proved; here $c(D)$ is a continuous, piecewise linear function and the remainder $r(D)$ satisfies the inequality
$$ |r(D)|\leq 5+(\frac{1}{\ln 1/\tau}+\frac{1}{\ln 2})\ln D, $$
where $\tau$ is the golden section.
The problem concerning the distribution of even-Fibonacci numbers $\overrightarrow{N}$ over arithmetic progressions $\overrightarrow{N}\equiv r\;\mathrm{mod}\;d$ is also studied. Let $l_{F_1}(d,r,X)$ be the number of $N's$, $0 \leq N \leq X$, satisfying the above congruence. Then the asymptotic formula
$$ l_{F_1}(d,r,X)=\frac{X}{d}+c(d)\ln X $$
is true, where $c(d)=O(d\ln d)$ and the constant in $O$ does not depend on $X$$d$$r$. In particular, this formula implies the uniformity of the distribution of the even-Fibonacci numbers over progressions for all differences $d=O(\frac{X^{1/2}}{\ln X})$.
The set $\overrightarrow{\mathbb{Z}}$ of even-Fibonacci numbers is an integral modification of the well-known one-dimensional Fibonacci quasilattice $\mathcal{F}$. Like $\mathcal{F}$, the set $\overrightarrow{\mathbb{Z}}$ is a quasilattice, but it is not a model set. However, it is shown that the spectra $\Lambda_{\mathcal{F}}$ and $\Lambda_{\overrightarrow{\mathbb{Z}}}$ coincide up to a scale factor $\nu=1+\tau^2$, and an explicit formula is obtained for the structural amplitudes $f_{\overrightarrow{\mathbb{Z}}}(\lambda)$, where $\lambda=a+b \tau$ lies in the spectrum:
$$ f_{\overrightarrow{\mathbb{Z}}}(\lambda)=\frac{\sin(\pi b\tau)}{\pi b\tau}\exp(-3\pi i\;b\tau). $$


Keywords: Even-Fibonacci numbers, Fibonacci quasilattices, Fibonacci circular multiplication, Diophantine equations, spectrum

Full text: PDF file (441 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2009, 20:3, 339–360

Bibliographic databases:

MSC: 06A11
Received: 05.06.2007

Citation: V. G. Zhuravlev, “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, Algebra i Analiz, 20:3 (2008), 18–46; St. Petersburg Math. J., 20:3 (2009), 339–360

Citation in format AMSBIB
\Bibitem{Zhu08}
\by V.~G.~Zhuravlev
\paper Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 3
\pages 18--46
\mathnet{http://mi.mathnet.ru/aa512}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2454451}
\zmath{https://zbmath.org/?q=an:1206.11020}
\elib{http://elibrary.ru/item.asp?id=11149937}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 3
\pages 339--360
\crossref{https://doi.org/10.1090/S1061-0022-09-01051-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267497700002}


Linking options:
  • http://mi.mathnet.ru/eng/aa512
  • http://mi.mathnet.ru/eng/aa/v20/i3/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Krasil'shchikov, “The spectrum of one-dimensional quasilattices”, Siberian Math. J., 51:1 (2010), 53–56  mathnet  crossref  mathscinet  isi  elib  elib
    2. A. V. Shutov, “Trigonometricheskie summy nad odnomernymi kvazireshetkami”, Chebyshevskii sb., 13:2 (2012), 136–148  mathnet
    3. E. P. Davletyarova, A. A. Zhukova, A. V. Shutov, “Geometrization of Fibonacci numeration system and its applications to number theory”, St. Petersburg Math. J., 25:6 (2014), 893–907  mathnet  crossref  mathscinet  zmath  isi  elib
    4. Shutov A.V., “Ob odnoi additivnoi zadache s drobnymi dolyami”, Nauchnye vedomosti belgorodskogo gosudarstvennogo universiteta. seriya: matematika. fizika, 30 (2013), 111–120  elib
    5. A. V. Shutov, “Trigonometric Sums over One-Dimensional Quasilattices of Arbitrary Codimension”, Math. Notes, 97:5 (2015), 791–802  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. A. Zhukova, A. V. Shutov, “Binarnaya additivnaya zadacha s chislami spetsialnogo vida”, Chebyshevskii sb., 16:3 (2015), 246–275  mathnet  elib
    7. E. P. Davletyarova, A. A. Zhukova, A. V. Shutov, “Geometrizatsiya obobschennykh sistem schisleniya Fibonachchi i ee prilozheniya k teorii chisel”, Chebyshevskii sb., 17:2 (2016), 88–112  mathnet  elib
    8. A. A. Zhukova, A. V. Shutov, “Geometrizatsiya sistem schisleniya”, Chebyshevskii sb., 18:4 (2017), 222–245  mathnet  crossref  elib
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:316
    Full text:88
    References:45
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020