RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2008, том 20, выпуск 4, страницы 27–63 (Mi aa521)  

Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)

Статьи

$\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа $\mathrm F_4$

Н. А. Вавиловa, С. И. Николенкоb

a С.-Петербургский государственный университет, математико-механический факультет
b С.-Петербургское отделение Математического института им. В. А. Стеклова РАН

Аннотация: Мы даём новое геометрическое доказательство стандартного описанияподгрупп групп Шевалле $G=\mathrm{GF}_4,R)$ типа $\mathrm F_4$ над коммутативным кольцом $R$, нормализуемых элементарной подгруппой $\mathrm E(\mathrm F_4,R)$. Имеется два основных типа доказательств подобных результатов. Локализационные доказательства (Квиллен, Суслин, Бак) основаны на редукции размерности. Первое доказательство структурных теорем для исключительных групп на этом пути было получено в работах Абе, Судзуки, Таддеи и Васерштейна, однако оно опиралось на нетривиальные результаты, такие как теорема простоты Шевалле и редукция по радикалу. В дальнейшем первый автор, Степанов и Плоткин развили геометрический подход, разложение унипотентов, основанный на редукции по рангу. Этот подход совмещает методы Суслина, Уилсона и Голубчика, относившиеся к классическим группам, и методы теории представлений и алгебраической $K$-теории, введённые в структурную теорию групп Шевалле Мацумото и Штейном. Для векторных представлений классических групп доказательства, получающиеся на этом пути, совсем элементарны. С другой стороны, их обобщения на исключительные группы потребовали явного знания знаков структурных констант действия и уравнений на орбиту вектора старшего веса. Кроме того, они зависят от существования классических подгрупп очень большого ранга. В работе первого автора и Гавриловича для групп Шевалле типов $\Phi=\mathrm E_6,\mathrm E_7$ было предложено еще одно геометрическое доказательство структурных теорем (the proof from the Book), совмещающее идеи разложения унипотентов и кратного коммутирования. В настоящей работе мы показываем, что ценой дополнительных усилий можно так модифицировать это доказательство, чтобы охватить случай $\Phi=\mathrm F_4$. Попутно мы устанавливаем несколько новых фактов о группе Шевалле типа $\mathrm F_4$ и её 27-мерном представлении.

Ключевые слова: группа Шевалле, элементарная подгруппа, нормальные подгруппы, стандартное описание, минимальный модуль, параболические подгруппы, разложение унипотентов, корневой элемент, орбита вектора старшего веса, доказательство из Книги.

Полный текст: PDF файл (438 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
St. Petersburg Mathematical Journal, 2009, 20:4, 527–551

Реферативные базы данных:

MSC: 20G15, 20G35
Поступила в редакцию: 25.10.2006

Образец цитирования: Н. А. Вавилов, С. И. Николенко, “$\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа $\mathrm F_4$”, Алгебра и анализ, 20:4 (2008), 27–63; St. Petersburg Math. J., 20:4 (2009), 527–551

Цитирование в формате AMSBIB
\RBibitem{VavNik08}
\by Н.~А.~Вавилов, С.~И.~Николенко
\paper $\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа~$\mathrm F_4$
\jour Алгебра и анализ
\yr 2008
\vol 20
\issue 4
\pages 27--63
\mathnet{http://mi.mathnet.ru/aa521}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2473743}
\zmath{https://zbmath.org/?q=an:1206.20055}
\elib{http://elibrary.ru/item.asp?id=11568876}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 4
\pages 527--551
\crossref{https://doi.org/10.1090/S1061-0022-09-01060-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267802600002}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa521
  • http://mi.mathnet.ru/rus/aa/v20/i4/p27

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Н. А. Вавилов, А. Ю. Лузгарев, И. М. Певзнер, “Группа Шевалле типа $\mathrm E_6$ в 27-мерном представлении”, Вопросы теории представлений алгебр и групп. 14, Зап. научн. сем. ПОМИ, 338, ПОМИ, СПб., 2006, 5–68  mathnet  mathscinet  zmath  elib; N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, J. Math. Sci. (N. Y.), 145:1 (2007), 4697–4736  crossref  elib
    2. Н. А. Вавилов, М. Р. Гаврилович, С. И. Николенко, “Строение групп Шевалле: Доказательство из Книги”, Вопросы теории представлений алгебр и групп. 13, Зап. научн. сем. ПОМИ, 330, ПОМИ, СПб., 2006, 36–76  mathnet  mathscinet  zmath  elib; N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci. (N. Y.), 140:5 (2007), 626–645  crossref  elib
    3. Н. А. Вавилов, А. К. Ставрова, “Основные редукции в задаче описания нормальных подгрупп”, Вопросы теории представлений алгебр и групп. 16, Зап. научн. сем. ПОМИ, 349, ПОМИ, СПб., 2007, 30–52  mathnet  elib; N. A. Vavilov, A. K. Stavrova, “Basic reductions for the description of normal subgroups”, J. Math. Sci. (N. Y.), 151:3 (2008), 2949–2960  crossref  elib
    4. Н. А. Вавилов, “Как увидеть знаки структурных констант?”, Алгебра и анализ, 19:4 (2007), 34–68  mathnet  mathscinet  zmath; N. A. Vavilov, “Can one see the signs of structure constants?”, St. Petersburg Math. J., 19:4 (2008), 519–543  crossref  isi
    5. Н. А. Вавилов, А. Ю. Лузгарев, “Нормализатор группы Шевалле типа $\mathrm{E}_6$”, Алгебра и анализ, 19:5 (2007), 37–64  mathnet  mathscinet  zmath; N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm{E}_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718  crossref  isi
    6. Н. А. Вавилов, “О подгруппах симплектической группы, содержащих subsystem subgroup”, Вопросы теории представлений алгебр и групп. 16, Зап. научн. сем. ПОМИ, 349, ПОМИ, СПб., 2007, 5–29  mathnet  mathscinet  elib; N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948  crossref  elib
    7. Vavilov N., “An $A_3$-proof of structure theorems for Chevalley groups of types $E_6$ and $E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298  crossref  mathscinet  zmath  isi  elib
    8. Н. А. Вавилов, “Нумерология квадратных уравнений”, Алгебра и анализ, 20:5 (2008), 9–40  mathnet  mathscinet  zmath; N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707  crossref  isi
    9. А. Ю. Лузгарëв, “Описание надгрупп $\mathrm F_4$ в $\mathrm E_6$ над коммутативным кольцом”, Алгебра и анализ, 20:6 (2008), 148–185  mathnet  mathscinet  zmath; A. Yu. Luzgarev, “Overgroups of $\mathrm{F}_4$ in $\mathrm{E}_6$ over commutative rings”, St. Petersburg Math. J., 20:6 (2009), 955–981  crossref  isi
    10. Вавилов Н.А., Степанов А.В., “Надгруппы полупростых групп”, Вестн. Самарского гос. ун-та. Естественнонаучн. сер., 2008, № 3, 51–95  mathscinet  zmath
    11. А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “Об описании надгрупп $E(m,R)\otimes E(n,R)$”, Вопросы теории представлений алгебр и групп. 18, Зап. научн. сем. ПОМИ, 365, ПОМИ, СПб., 2009, 5–28  mathnet; A. S. Ananievskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$”, J. Math. Sci. (N. Y.), 161:4 (2009), 461–473  crossref  elib
    12. Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative $K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085  crossref  mathscinet  zmath  isi  elib
    13. N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Теория представлений, динамические системы, комбинаторные методы. XVII, Зап. научн. сем. ПОМИ, 373, ПОМИ, СПб., 2009, 48–72  mathnet; J. Math. Sci. (N. Y.), 168:3 (2010), 334–348  crossref
    14. Hazrat R., Vavilov N., “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65  crossref  mathscinet  zmath  isi  elib
    15. Н. А. Вавилов, В. Г. Казакевич, “Еще несколько вариаций на тему разложения трансвекций”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 32–47  mathnet; N. A. Vavilov, V. G. Kazakevich, “More variations on decomposition of transvections”, J. Math. Sci. (N. Y.), 171:3 (2010), 322–330  crossref
    16. Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27  mathnet
    17. Н. А. Вавилов, А. Ю. Лузгарев, “Группа Шевалле типа $\mathrm E_7$ в 56-мерном представлении”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 5–99  mathnet; N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251  crossref
    18. И. М. Певзнер, “Геометрия корневых элементов в группах типа $\mathrm E_6$”, Алгебра и анализ, 23:3 (2011), 261–309  mathnet  mathscinet  zmath  elib; I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, St. Petersburg Math. J., 23:3 (2012), 603–635  crossref  isi  elib
    19. Н. А. Вавилов, “$\mathrm A_3$-доказательство структурных теорем для групп Шевалле типов $\mathrm E_6$ и $\mathrm E_7$. II. Основная лемма”, Алгебра и анализ, 23:6 (2011), 1–31  mathnet  mathscinet  elib; N. A. Vavilov, “An $\mathrm A_3$-proof of the structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. The main lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942  crossref  isi  elib
    20. Н. А. Вавилов, А. В. Степанов, “Линейные группы над общими кольцами I. Общие места”, Вопросы теории представлений алгебр и групп. 22, Зап. научн. сем. ПОМИ, 394, ПОМИ, СПб., 2011, 33–139  mathnet  mathscinet; N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci. (N. Y.), 188:5 (2013), 490–550  crossref
    21. Н. А. Вавилов, А. В. Щеголев, “Надгруппы subsystem subgroups в исключительных группах: уровни”, Вопросы теории представлений алгебр и групп. 23, Зап. научн. сем. ПОМИ, 400, ПОМИ, СПб., 2012, 70–126  mathnet  mathscinet; N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195  crossref
    22. Hazrat R. Vavilov N. Zhang Z., “Relative Commutator Calculus in Chevalley Groups”, J. Algebra, 385 (2013), 262–293  crossref  mathscinet  zmath  isi  elib
    23. N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Вопросы теории представлений алгебр и групп. 27, Зап. научн. сем. ПОМИ, 430, ПОМИ, СПб., 2014, 32–52  mathnet  mathscinet
    24. A. Luzgarev, N. Vavilov, “Calculations in exceptional groups, an update”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 177–195  mathnet; J. Math. Sci. (N. Y.), 209:6 (2015), 922–934  crossref
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:375
    Полный текст:60
    Литература:38
    Первая стр.:10

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017