Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2008, том 20, выпуск 5, страницы 109–154 (Mi aa533)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Статьи

О разрешимости задачи Неймана в области с пиком

В. Г. Мазьяa, С. В. Поборчийb

a Department of Mathematics, Linköping University, Linköping, Sweden
b С.-Петербургский государственный университет, математико-механический факультет

Аннотация: Рассматривается задача Неймана для эллиптического квазилинейного уравнения второго порядка в многомерной области с вершиной пика на границе. При определённых условиях исследование разрешимости задачи Неймана сводится к описанию пространства, сопряжённого к пространству Соболева $W^1_p(\Omega)$, $1<p<\infty$ или (в случае однородного уравнения с неоднородным краевым уcловием) к описанию пространства, сопряжённого к пространству $TW^1_p(\Omega)$ граничных следов функций из класса $W^1_p(\Omega)$. Упомянутые сопряжённые пространства характеризуются в терминах классов Соболева с отрицательными показателями гладкости на липшицевых областях или липшицевых поверхностях, а также в терминах некоторых весовых классов функций на интервале $(0,1)$ числовой оси. Доказательство основных результатов базируется на известном явном описании пространств $TW^1_p(\Omega)$ в области с вершиной внешнего или внутреннего пика на границе.

Ключевые слова: задача Неймана, пространства Соболева, области с пиками, граничные следы, сопряжённые пространства.

Полный текст: PDF файл (498 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
St. Petersburg Mathematical Journal, 2009, 20:5, 757–790

Реферативные базы данных:

MSC: 35J25
Поступила в редакцию: 14.01.2008

Образец цитирования: В. Г. Мазья, С. В. Поборчий, “О разрешимости задачи Неймана в области с пиком”, Алгебра и анализ, 20:5 (2008), 109–154; St. Petersburg Math. J., 20:5 (2009), 757–790

Цитирование в формате AMSBIB
\RBibitem{MazPob08}
\by В.~Г.~Мазья, С.~В.~Поборчий
\paper О~разрешимости задачи Неймана в~области с~пиком
\jour Алгебра и анализ
\yr 2008
\vol 20
\issue 5
\pages 109--154
\mathnet{http://mi.mathnet.ru/aa533}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2492362}
\zmath{https://zbmath.org/?q=an:1206.35091}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 5
\pages 757--790
\crossref{https://doi.org/10.1090/S1061-0022-09-01072-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000270134200006}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa533
  • http://mi.mathnet.ru/rus/aa/v20/i5/p109

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. V. Maz'ya, “Solvability criteria for the Neumann $p$-Laplacian with irregular data”, Алгебра и анализ, 30:3 (2018), 129–139  mathnet  mathscinet  elib; St. Petersburg Math. J., 30:3 (2019), 485–492  crossref  isi
    2. В. В. Бровкин, А. А. Коньков, “О существовании решений второй краевой задачи для $p$-лапласиана на римановых многообразиях”, Матем. заметки, 109:2 (2021), 180–195  mathnet  crossref; V. V. Brovkin, A. A. Kon'kov, “Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds”, Math. Notes, 109:2 (2021), 171–183  crossref  isi  elib
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:454
    Полный текст:142
    Литература:67
    Первая стр.:18
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021