RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 6, Pages 119–147 (Mi aa542)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Algebraic cryptography: new constructions and their security against provable break

D. Grigorieva, A. Kojevnikovb, S. J. Nikolenkob

a IRMAR, Université de Rennes, Rennes, France
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Very few known cryptographic primitives are based on noncommutative algebra. Each new scheme is of substantial interest, because noncommutative constructions are secure against many standard cryptographic attacks. On the other hand, cryptography does not provide security proofs that might allow the security of a cryptographic primitive to rely upon structural complexity assumptions. Thus, it is important to investigate weaker notions of security.
In this paper, new constructions of cryptographic primitives based on group invariants are proposed, together with new ways to strengthen them for practical use. Also, the notion of a provable break is introduced, which is a weaker version of the regular cryptographic break. In this new version, an adversary should have a proof that he has correctly decyphered the message. It is proved that the cryptosystems based on matrix group invariants and a version of the Anshel–Anshel–Goldfeld key agreement protocol for modular groups are secure against provable break unless $\mathrm{NP}=\mathrm{RP}$.

Keywords: Algebraic criptography, criptographic primitives, provable break

Full text: PDF file (385 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2009, 20:6, 937–953

Bibliographic databases:

MSC: 94A60, 68P25, 11T71

Citation: D. Grigoriev, A. Kojevnikov, S. J. Nikolenko, “Algebraic cryptography: new constructions and their security against provable break”, Algebra i Analiz, 20:6 (2008), 119–147; St. Petersburg Math. J., 20:6 (2009), 937–953

Citation in format AMSBIB
\Bibitem{GriKojNik08}
\by D.~Grigoriev, A.~Kojevnikov, S.~J.~Nikolenko
\paper Algebraic cryptography: new constructions and their security against provable break
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 6
\pages 119--147
\mathnet{http://mi.mathnet.ru/aa542}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2530896}
\zmath{https://zbmath.org/?q=an:1206.94069}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 6
\pages 937--953
\crossref{https://doi.org/10.1090/S1061-0022-09-01079-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000272556200004}


Linking options:
  • http://mi.mathnet.ru/eng/aa542
  • http://mi.mathnet.ru/eng/aa/v20/i6/p119

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Osinovskaya A.A., Suprunenko I.D., “Stabilizers and Orbits of First Level Vectors in Modules for the Special Linear Groups”, J. Group Theory, 16:5 (2013), 719–743  crossref  mathscinet  zmath  isi  elib
    2. Marko F., Zubkov A.N., “Minimal Degrees of Invariants of (Super)Groups - a Connection to Cryptology”, Linear Multilinear Algebra, 65:11 (2017), 2340–2355  crossref  mathscinet  zmath  isi  scopus
    3. Marko F., Zubkov A.N., Juras M., “Public-Key Cryptosystem Based on Invariants of Diagonalizable Groups”, Groups Complex. Cryptol., 9:1 (2017), 31–54  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:647
    Full text:187
    References:62
    First page:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019