RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 2, Pages 1–32 (Mi aa655)  

This article is cited in 7 scientific papers (total in 7 papers)

Expository Surveys

Thomson's theorem on mean square polynomial approximation

J. E. Brennan

Department of Mathematics, University of Kentucky, Lexington, USA

Full text: PDF file (1599 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2006, 17:2, 217–238

Bibliographic databases:

Received: 24.05.2004

Citation: J. E. Brennan, “Thomson's theorem on mean square polynomial approximation”, Algebra i Analiz, 17:2 (2005), 1–32; St. Petersburg Math. J., 17:2 (2006), 217–238

Citation in format AMSBIB
\Bibitem{Bre05}
\by J.~E.~Brennan
\paper Thomson's theorem on mean square polynomial approximation
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 2
\pages 1--32
\mathnet{http://mi.mathnet.ru/aa655}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2159582}
\zmath{https://zbmath.org/?q=an:1101.41010}
\elib{http://elibrary.ru/item.asp?id=9154189}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 2
\pages 217--238
\crossref{https://doi.org/10.1090/S1061-0022-06-00901-0}


Linking options:
  • http://mi.mathnet.ru/eng/aa655
  • http://mi.mathnet.ru/eng/aa/v17/i2/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Brennan J.E., “On a conjecture of Mergelyan”, J. Contemp. Math. Anal., 43:6 (2008), 341–352  crossref  mathscinet  zmath  isi
    2. Aleman A., Richter S., Sundberg C., “Nontangential limits in $\mathscr P^t(µ)$-spaces and the index of invariant subspaces”, Ann. of Math. (2), 169:2 (2009), 449–490  crossref  mathscinet  zmath  isi  scopus
    3. St. Petersburg Math. J., 22:1 (2011), 41–53  mathnet  crossref  mathscinet  zmath  isi  elib
    4. Aleman A., Richter S., Sundberg C., “A Quantitative Estimate for Bounded Point Evaluations in P-t(mu)-spaces”, Topics in Operator Theory: Operators, Matrices and Analytic Functions, Operator Theory Advances and Applications, 202, 2010, 1–10  mathscinet  zmath  isi
    5. Yang L., “Bounded Point Evaluations For Rationally Multicyclic Subnormal Operators”, J. Math. Anal. Appl., 458:2 (2018), 1059–1072  crossref  mathscinet  zmath  isi  scopus
    6. Yang L., “Bounded Point Evaluations For Certain Polynomial and Rational Modules”, J. Math. Anal. Appl., 474:1 (2019), 219–241  crossref  mathscinet  zmath  isi  scopus
    7. Yang L., “Spectral Picture For Rationally Multicyclic Subnormal Operators”, Banach J. Math. Anal., 13:1 (2019), 151–173  crossref  isi
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:322
    Full text:117
    References:14
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019