RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 2, Pages 70–95 (Mi aa660)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

Asimptotic dimension of the hyperbolic space and the capacity dimension of its boundary at infinity

S. V. Buyalo

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Full text: PDF file (1410 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2006, 17:2, 267–283

Bibliographic databases:

Received: 01.11.2004

Citation: S. V. Buyalo, “Asimptotic dimension of the hyperbolic space and the capacity dimension of its boundary at infinity”, Algebra i Analiz, 17:2 (2005), 70–95; St. Petersburg Math. J., 17:2 (2006), 267–283

Citation in format AMSBIB
\Bibitem{Buy05}
\by S.~V.~Buyalo
\paper Asimptotic dimension of the hyperbolic space and the capacity dimension of its boundary at infinity
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 2
\pages 70--95
\mathnet{http://mi.mathnet.ru/aa660}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2159584}
\zmath{https://zbmath.org/?q=an:1100.31006}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 2
\pages 267--283
\crossref{https://doi.org/10.1090/S1061-0022-06-00903-4}


Linking options:
  • http://mi.mathnet.ru/eng/aa660
  • http://mi.mathnet.ru/eng/aa/v17/i2/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Buyalo, “Capacity dimension and embedding of hyperbolic spaces in products of trees”, St. Petersburg Math. J., 17:4 (2006), 581–591  mathnet  crossref  mathscinet  zmath
    2. Lang U., Schlichenmaier T., “Nagata Dimension, Quasisymmetric Embeddings, and Lipschitz Extensions”, Int. Math. Res. Notices, 2005, no. 58, 3625–3655  crossref  mathscinet  zmath  isi  elib  scopus
    3. Brodskiy N., Dydak J., Higes J., Mitra A., “Dimension zero at all scales”, Topology Appl., 154:14 (2007), 2729–2740  crossref  mathscinet  zmath  isi  elib  scopus
    4. Dranishnikov A.N., Smith J., “On asymptotic Assouad-Nagata dimension”, Topology Appl., 154:4 (2007), 934–952  crossref  mathscinet  zmath  isi  elib  scopus
    5. S. V. Buyalo, N. D. Lebedeva, “Dimensions of locally and asymptotically self-similar spaces”, St. Petersburg Math. J., 19:1 (2008), 45–65  mathnet  crossref  mathscinet  zmath  isi
    6. N. Lebedeva, “Dimensions of products of hyperbolic spaces”, St. Petersburg Math. J., 19:1 (2008), 107–124  mathnet  crossref  mathscinet  zmath  isi
    7. Dranishnikov A., “On asymptotic dimension of amalgamated products and right-angled Coxeter groups”, Algebr. Geom. Topol., 8:3 (2008), 1281–1293  crossref  mathscinet  zmath  isi  elib  scopus
    8. Bell G., “Asymptotic dimension”, Topology Appl., 155:12 (2008), 1265–1296  crossref  mathscinet  zmath  isi  elib  scopus
    9. Brodskiy N., Dydak J., Higes J., Mitra A., “Assouad–Nagata dimension via Lipschitz extensions”, Israel J. Math., 171:1 (2009), 405–423  crossref  mathscinet  zmath  isi  elib  scopus
    10. A. Smirnov, “Linearly controlled asymptotic dimension of the fundamental group of a graph-manifold”, St. Petersburg Math. J., 22:2 (2011), 307–319  mathnet  crossref  mathscinet  zmath  isi
    11. Higes J. Peng I., “Assouad-Nagata Dimension of Connected Lie Groups”, Math. Z., 273:1-2 (2013), 283–302  crossref  mathscinet  zmath  isi  elib  scopus
    12. Mackay J.M. Sisto A., “Embedding Relatively Hyperbolic Groups in Products of Trees”, Algebr. Geom. Topol., 13:4 (2013), 2261–2282  crossref  mathscinet  zmath  isi  elib  scopus
    13. Cordes M., Hume D., “Stability and the Morse Boundary”, J. Lond. Math. Soc.-Second Ser., 95:3 (2017), 963–988  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:289
    Full text:89
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019