RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2005, том 17, выпуск 5, страницы 69–90 (Mi aa706)  

Эта публикация цитируется в 23 научных статьях (всего в 23 статьях)

Статьи

Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с учетом корректора

М. Ш. Бирман, Т. А. Суслина

С.-Петербургский государственный университет, физический факультет

Аннотация: В гильбертовом пространстве рассматривается семейство операторов, допускающее факторизацию вида $A(t)=X(t)^*X(t)$, где $X(t)=X_0+t X_1$, $t\in\mathbb R$. Предполагается, что подпространство $\mathfrak N=\operatorname{Ker}A(0)$ конечномерно. Для резольвенты $(A(t)+\varepsilon^2I)^{-1}$ на фиксированном промежутке $|t|\leq t^0$ получена аппроксимация по операторной норме при малом $\varepsilon$. Эта аппроксимация учитывает так называемый “корректор”; остаток имеет оценку $O(1)$. Результаты нацелены на применения к задачам гомогенизации периодических дифференциальных операторов в пределе малого периода. Работа развивает и усиливает результаты гл. 1 статьи [BSu].

Ключевые слова: пороговые аппроксимации, гомогенизация, корректор.

Полный текст: PDF файл (996 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
St. Petersburg Mathematical Journal, 2006, 17:5, 745–762

Реферативные базы данных:

Поступила в редакцию: 11.04.2005

Образец цитирования: М. Ш. Бирман, Т. А. Суслина, “Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с учетом корректора”, Алгебра и анализ, 17:5 (2005), 69–90; St. Petersburg Math. J., 17:5 (2006), 745–762

Цитирование в формате AMSBIB
\RBibitem{BirSus05}
\by М.~Ш.~Бирман, Т.~А.~Суслина
\paper Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с~учетом корректора
\jour Алгебра и анализ
\yr 2005
\vol 17
\issue 5
\pages 69--90
\mathnet{http://mi.mathnet.ru/aa706}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2241423}
\zmath{https://zbmath.org/?q=an:1121.47031}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 5
\pages 745--762
\crossref{https://doi.org/10.1090/S1061-0022-06-00927-7}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa706
  • http://mi.mathnet.ru/rus/aa/v17/i5/p69

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. М. Ш. Бирман, Т. А. Суслина, “Усреднение периодических эллиптических дифференциальных операторов с учетом корректора”, Алгебра и анализ, 17:6 (2005), 1–104  mathnet  mathscinet  zmath  elib; M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with the account of a corrector”, St. Petersburg Math. J., 17:6 (2006), 897–973  crossref
    2. М. Ш. Бирман, Т. А. Суслина, “Усреднение периодических дифференциальных операторов с учетом корректора. Приближение решений в классе Соболева $H^1(\mathbb R^d)$”, Алгебра и анализ, 18:6 (2006), 1–130  mathnet  mathscinet  zmath; M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $H^1(\mathbb R^d)$”, St. Petersburg Math. J., 18:6 (2007), 857–955  crossref
    3. М. Ш. Бирман, Т. А. Суслина, “Усреднение стационарной периодической системы Максвелла в случае постоянной магнитной проницаемости”, Функц. анализ и его прил., 41:2 (2007), 3–23  mathnet  crossref  mathscinet  zmath  elib; M. Sh. Birman, T. A. Suslina, “Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability”, Funct. Anal. Appl., 41:2 (2007), 81–98  crossref  isi
    4. Т. А. Суслина, “Усреднение стационарной периодической системы Максвелла с учетом корректора”, Алгебра и анализ, 19:3 (2007), 183–235  mathnet  mathscinet  zmath; T. A. Suslina, “Homogenization with corrector for a stationary periodic Maxwell system”, St. Petersburg Math. J., 19:3 (2008), 455–494  crossref  isi
    5. Д. И. Борисов, “Асимптотики решений эллиптических систем с быстро осциллирующими коэффициентами”, Алгебра и анализ, 20:2 (2008), 19–42  mathnet  mathscinet  zmath; D. I. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, St. Petersburg Math. J., 20:2 (2009), 175–191  crossref  isi
    6. М. Ш. Бирман, Т. А. Суслина, “Операторные оценки погрешности при усреднении нестационарных периодических уравнений”, Алгебра и анализ, 20:6 (2008), 30–107  mathnet  mathscinet  zmath; M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928  crossref  isi
    7. Е. С. Василевская, “Усреднение параболической задачи Коши с периодическими коэффициентами при учёте корректора”, Алгебра и анализ, 21:1 (2009), 3–60  mathnet  mathscinet  zmath; E. S. Vasilevskaya, “Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients”, St. Petersburg Math. J., 21:1 (2010), 1–41  crossref  isi
    8. Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683  crossref  zmath  isi
    9. Т. А. Суслина, “Усреднение в классе Соболева $H^1(\mathbb R^d)$ для периодических эллиптических дифференциальных операторов второго порядка при включении членов первого порядка”, Алгебра и анализ, 22:1 (2010), 108–222  mathnet  mathscinet  zmath; T. A. Suslina, “Homogenization in Sobolev class $H^1(\mathbb R^d)$ for periodic elliptic second order differential operators including first order terms”, St. Petersburg Math. J., 22:1 (2011), 81–162  crossref  isi
    10. Т. А. Суслина, “Усреднение параболической задачи Коши в классе Соболева $H^1(\mathbb{R}^d)$”, Функц. анализ и его прил., 44:4 (2010), 91–96  mathnet  crossref  mathscinet  zmath; T. A. Suslina, “Homogenization of the Parabolic Cauchy Problem in the Sobolev Class $H^1(\mathbb{R}^d)$”, Funct. Anal. Appl., 44:4 (2010), 318–322  crossref  isi
    11. Suslina T., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb R^d)$”, Mathematical Modelling of Natural Phenomena, 5:4 (2010), 390–447  crossref  mathscinet  zmath  isi  scopus
    12. М. З. Соломяк, Т. А. Суслина, Д. Р. Яфаев, “О математическом творчестве М. Ш. Бирмана”, Алгебра и анализ, 23:1 (2011), 5–60  mathnet  mathscinet  zmath  elib; M. Z. Solomyak, T. A. Suslina, D. R. Yafaev, “On the mathematical works of M. Sh. Birman”, St. Petersburg Math. J., 23:1 (2012), 1–38  crossref  isi
    13. Е. С. Василевская, Т. А. Суслина, “Пороговые аппроксимации факторизованного самосопряженного операторного семейства с учетом первого и второго корректоров”, Алгебра и анализ, 23:2 (2011), 102–146  mathnet  mathscinet  zmath  elib; E. S. Vasilevskaya, T. A. Suslina, “Threshold approximations of a factorized selfadjoint operator family with the first and the second correctors taken into account”, St. Petersburg Math. J., 23:2 (2012), 275–308  crossref  isi  elib
    14. Bunoiu R., Cardone G., Suslina T., “Spectral approach to homogenization of an elliptic operator periodic in some directions”, Math Methods Appl Sci, 34:9 (2011), 1075–1096  crossref  mathscinet  zmath  isi  elib  scopus
    15. Е. С. Василевская, Т. А. Суслина, “Усреднение параболических и эллиптических периодических операторов в $L_2(\mathbb R^d)$ при учете первого и второго корректоров”, Алгебра и анализ, 24:2 (2012), 1–103  mathnet  mathscinet  zmath  elib; E. S. Vasilevskaya, T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb R^d)$ with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261  crossref  isi  elib
    16. М. А. Пахнин, Т. А. Суслина, “Операторные оценки погрешности при усреднении эллиптической задачи Дирихле в ограниченной области”, Алгебра и анализ, 24:6 (2012), 139–177  mathnet  mathscinet  zmath  elib; M. A. Pakhnin, T. A. Suslina, “Operator error estimates for homogenization of the elliptic Dirichlet problem in a bounded domain”, St. Petersburg Math. J., 24:6 (2013), 949–976  crossref  isi  elib
    17. Т. А. Суслина, “Аппроксимация резольвенты двупараметрического квадратичного операторного пучка вблизи нижнего края спектра”, Алгебра и анализ, 25:5 (2013), 221–251  mathnet  mathscinet  zmath; T. A. Suslina, “Approximation of the resolvent of a twoparametric quadratic operator pencil near the bottom of the spectrum”, St. Petersburg Math. J., 25:5 (2014), 869–891  crossref  isi  elib
    18. Ю. М. Мешкова, “Усреднение задачи Коши для параболических систем с периодическими коэффициентами”, Алгебра и анализ, 25:6 (2013), 125–177  mathnet  mathscinet  zmath; Yu. M. Meshkova, “Homogenization of the Cauchy problem for parabolic systems with periodic coefficients”, St. Petersburg Math. J., 25:6 (2014), 981–1019  crossref  isi  elib
    19. Т. А. Суслина, “Усреднение эллиптических систем с периодическими коэффициентами: операторные оценки погрешности в $L_2(\mathbb R^d)$ с учетом корректора”, Алгебра и анализ, 26:4 (2014), 195–263  mathnet  mathscinet  elib; T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in $L_2(\mathbb R^d)$ with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693  crossref  isi  elib
    20. А. А. Кукушкин, Т. А. Суслина, “Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 28:1 (2016), 89–149  mathnet  mathscinet  elib; A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108  crossref  isi
    21. Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
    22. Dorodnyi M.A., Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522  crossref  mathscinet  zmath  isi
    23. Suslina T.A., “Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space”, Rev. Math. Phys., 30:8, SI (2018), 1840016  crossref  mathscinet  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:379
    Полный текст:123
    Литература:44
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019