RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2003, Volume 15, Issue 1, Pages 215–239 (Mi aa779)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Uniqueness theorem and singular spectrum in the Friedrichs model near a singular point

S. Yakovlev

Departamento de Matematicas, Universidad Simón Bolívar, Caracas, Venezuela

Full text: PDF file (948 kB)
References: PDF file   HTML file

English version:
St. Petersburg Mathematical Journal, 2004, 15:1, 149–164

Bibliographic databases:

Received: 19.06.2002

Citation: S. Yakovlev, “Uniqueness theorem and singular spectrum in the Friedrichs model near a singular point”, Algebra i Analiz, 15:1 (2003), 215–239; St. Petersburg Math. J., 15:1 (2004), 149–164

Citation in format AMSBIB
\Bibitem{Yak03}
\by S.~Yakovlev
\paper Uniqueness theorem and singular spectrum in the Friedrichs model near a~singular point
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 1
\pages 215--239
\mathnet{http://mi.mathnet.ru/aa779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1979723}
\zmath{https://zbmath.org/?q=an:1092.47023}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 1
\pages 149--164
\crossref{https://doi.org/10.1090/S1061-0022-03-00807-0}


Linking options:
  • http://mi.mathnet.ru/eng/aa779
  • http://mi.mathnet.ru/eng/aa/v15/i1/p215

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Eshkabilov Yu.Kh., “O beskonechnosti chisla otritsatelnykh sobstvennykh znachenii modeli fridriskha”, Nanosistemy: fizika, khimiya, matematika, 3:6 (2012), 16–24  mathscinet  zmath  elib
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:182
    Full text:53
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019