RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2002, том 14, выпуск 2, страницы 214–234 (Mi aa847)  

Эта публикация цитируется в 39 научных статьях (всего в 39 статьях)

Легкое чтение для профессионала

Геометрическая лемма Каннана–Ловаса–Шимоновича, не зависящие от размерности оценки распределения значений полиномов и распределение нулей случайных аналитических функций

Ф. Назаровa, М. Содинb, А. Вольбергa

a Department of Mathematics, Michigan State University, East Lansing, MI, USA
b School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Israel

Аннотация: Мы хотим привлечь внимание к одному простому геометрическому неравенству, которое не зависит от размерности и может быть доказано с помощью классического “разложения на иглы”. Опираясь на это неравенство, несложным и элегантным способом можно получить точные оценки (тоже не зависящие от размерности) для распределения значений полиномов на выпуклых подмножествах в $\mathbb R^n$. Эти оценки, в свою очередь, ведут к неожиданному результату о распределении нулей случайных аналитических функций. В нестрогих терминах можно сказать, что для простых семейств аналитических функций существует “типичное” распределение нулей. При этом “размер” той части семейства, где у функций распределение нулей отклоняется от типичного на некоторую величину, оценивается сверху числом $\operatorname{const}\exp\{размер уклонения\}$.
По существу изложение замкнуто в себе. Выбирая стиль, мы стремились к тому, чтобы чтение доставило удовольствие как студенту-старшекурснику, так и специалисту.
В резюме еще принято сообщать, что же в статье нового. На наш взгляд, ответ зависит от двух переменных: “Что написано?” и “Кто читает?” Поскольку значение второй нам недоступно, мы можем лишь привести рамки, в которые наверняка заключен ответ при известном значении первой. Но, вероятно, в нашей ситуации все равно получится стандартный интервал [Ничего, Всё] (концы включаются).

Ключевые слова: разложение на иглы, неравенство Ремеза, оценка Оффорда.

Полный текст: PDF файл (977 kB)

Англоязычная версия:
St. Petersburg Mathematical Journal, 2003, 14:2, 351–366

Реферативные базы данных:
Поступила в редакцию: 20.05.2001

Образец цитирования: Ф. Назаров, М. Содин, А. Вольберг, “Геометрическая лемма Каннана–Ловаса–Шимоновича, не зависящие от размерности оценки распределения значений полиномов и распределение нулей случайных аналитических функций”, Алгебра и анализ, 14:2 (2002), 214–234; St. Petersburg Math. J., 14:2 (2003), 351–366

Цитирование в формате AMSBIB
\RBibitem{NazSodVol02}
\by Ф.~Назаров, М.~Содин, А.~Вольберг
\paper Геометрическая лемма Каннана--Ловаса--Шимоновича, не зависящие от размерности оценки распределения значений полиномов и распределение нулей случайных аналитических функций
\jour Алгебра и анализ
\yr 2002
\vol 14
\issue 2
\pages 214--234
\mathnet{http://mi.mathnet.ru/aa847}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1925887}
\zmath{https://zbmath.org/?q=an:1030.60040}
\transl
\jour St. Petersburg Math. J.
\yr 2003
\vol 14
\issue 2
\pages 351--366


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/aa847
  • http://mi.mathnet.ru/rus/aa/v14/i2/p214

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Nazarov F., Sodin M., Volberg A., “Local dimension-free estimates for volumes of sublevel sets of analytic functions”, Israel J. Math., 133 (2003), 269–283  crossref  mathscinet  zmath  isi  scopus
    2. Fradelizi M., Guédon O., “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335  crossref  mathscinet  zmath  isi  scopus
    3. Bastero J., Romance M., “Random vectors satisfying Khinchine–Kahane type inequalities for linear and quadratic forms”, Mathematische Nachrichten, 278:9 (2005), 1015–1024  crossref  mathscinet  zmath  isi  scopus
    4. Bobkov S. G., Zegarlinski B., Entropy bounds and isoperimetry, Mem. Amer. Math. Soc., 176, no. 829, 2005, x+69 pp.  mathscinet  isi  elib
    5. Sodin M.“,Zeroes of Gaussian analytic functions”, European Congress of Mathematics, 2005, 445–458  mathscinet  zmath  isi
    6. Fradelizi M., Guedon O., “A generalized localization theorem and geometric inequalities for convex bodies”, Advances in Mathematics, 204:2 (2006), 509–529  crossref  mathscinet  zmath  isi  scopus
    7. S. G. Bobkov, F. L. Nazarov, “Sharp dilation-type inequalities with fixed parameter of convexity”, Вероятность и статистика. 12, Зап. научн. сем. ПОМИ, 351, ПОМИ, СПб., 2007, 54–78  mathnet; J. Math. Sci. (N. Y.), 152:6 (2008), 826–839  crossref
    8. Bobkov S. G., “Large deviations and isoperimetry over convex probability measures with heavy tails”, Electron. J. Probab., 12 (2007), 1072–1100 (electronic)  crossref  mathscinet  zmath  isi  elib  scopus
    9. Brudnyi A., “On local behavior of holomorphic functions along complex submanifolds of C–N supercript stop”, Inventiones Mathematicae, 173:2 (2008), 315–363  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    10. Fradelizi M., “Concentration inequalities for $s$-concave measures of dilations of Borel sets and applications”, Electron. J. Probab., 14:71 (2009), 2068–2090  crossref  mathscinet  zmath  isi  scopus
    11. Klartag B., “A Berry-Esseen type inequality for convex bodies with an unconditional basis”, Probab. Theory Related Fields, 145:1-2 (2009), 1–33  crossref  mathscinet  zmath  isi  scopus
    12. Milman E., “Isoperimetric Bounds on Convex Manifolds”, Concentration, Functional Inequalities and Isoperimetry, Contemporary Mathematics, 545, 2011, 195–208  crossref  mathscinet  zmath  isi
    13. Boros N., Janakiraman P., Volberg A., “Sharp L-P-bounds for a perturbation of Burkholder's Martingale Transform”, C R Math Acad Sci Paris, 349:5–6 (2011), 303–307  crossref  mathscinet  zmath  isi  scopus
    14. Janakiraman P., “Orthogonality in Complex Martingale Spaces and Connections with the Beurling-Ahlfors Transform”, Ill. J. Math., 54:4, SI (2012), 1509–1563  mathscinet  isi
    15. Akopyan A., Karasev R., “Kadets-Type Theorems for Partitions of a Convex Body”, Discret. Comput. Geom., 48:3 (2012), 766–776  crossref  mathscinet  zmath  isi  elib  scopus
    16. Boros N., Janakiraman P., Volberg A., “Perturbation of Burkholder's Martingale Transform and Monge-Ampere Equation”, Adv. Math., 230:4-6 (2012), 2198–2234  crossref  mathscinet  zmath  isi  scopus
    17. Cwikel M., Sagher Y., Shvartsman P., “A New Look at the John-Nirenberg and John-Stromberg Theorems for Bmo”, J. Funct. Anal., 263:1 (2012), 129–166  crossref  mathscinet  zmath  isi  elib  scopus
    18. Milman E., “A Proof of Bobkov's Spectral Bound for Convex Domains via Gaussian Fitting and Free Energy Estimation”, Analysis and Geometry of Metric Measure Spaces, CRM Proceedings & Lecture Notes, 56, eds. Dafni G., McCann R., Stancu A., Amer Mathematical Soc, 2013, 181–196  crossref  mathscinet  zmath  isi
    19. Boros N., Szekelyhidi Jr. Laszlo, Volberg A., “Laminates Meet Burkholder Functions”, J. Math. Pures Appl., 100:5 (2013), 687–700  crossref  mathscinet  zmath  isi  scopus
    20. Brudnyi A., “L-Q Norm Inequalities for Analytic Functions Revisited”, J. Approx. Theory, 179 (2014), 24–32  crossref  mathscinet  zmath  isi  scopus
    21. Eldan R., Klartag Bo'az, “Dimensionality and the Stability of the Brunn-Minkowski Inequality”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 13:4 (2014), 975–1007  mathscinet  zmath  isi
    22. Bradshaw Z., Grujie Z., “Blow-Up Scenarios For the 3D Navier–Stokes Equations Exhibiting Sub-Criticality With Respect To the Scaling of One-Dimensional Local Sparseness”, J. Math. Fluid Mech., 16:2 (2014), 321–334  crossref  mathscinet  zmath  isi  scopus
    23. Л. М. Арутюнян, Е. Д. Косов, “Оценки интегральных норм многочленов на пространствах с выпуклыми мерами”, Матем. сб., 206:8 (2015), 3–22  mathnet  crossref  mathscinet  zmath  adsnasa  elib; L. M. Arutyunyan, E. D. Kosov, “Estimates for integral norms of polynomials on spaces with convex measures”, Sb. Math., 206:8 (2015), 1030–1048  crossref  isi
    24. Kosov E.D., “Lower Estimates of Measure of Deviation of Polynomials From Mathematical Expectations”, Dokl. Math., 92:3 (2015), 698–700  crossref  mathscinet  zmath  isi  elib  scopus
    25. Adamczak R., Wolff P., “Concentration Inequalities For Non-Lipschitz Functions With Bounded Derivatives of Higher Order”, Probab. Theory Relat. Field, 162:3-4 (2015), 531–586  crossref  mathscinet  zmath  isi  elib  scopus
    26. Bobkov S.G., Melbourne J., “Localization For Infinite-Dimensional Hyperbolic Measures”, Dokl. Math., 91:3 (2015), 297–299  crossref  mathscinet  zmath  isi  scopus
    27. Arutyunyan L.M., Kosov E.D., “Polynomials on Spaces With Logarithmically Concave Measures”, Dokl. Math., 91:1 (2015), 72–75  crossref  mathscinet  zmath  isi  elib  scopus
    28. В. И. Богачев, “Распределения многочленов на многомерных и бесконечномерных пространствах с мерами”, УМН, 71:4(430) (2016), 107–154  mathnet  crossref  mathscinet  adsnasa  elib; V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749  crossref  isi
    29. Л. М. Арутюнян, “Абсолютная непрерывность распределений многочленов на пространствах с логарифмически вогнутыми мерами”, Матем. заметки, 100:5 (2016), 672–681  mathnet  crossref  mathscinet  elib; L. M. Arutyunyan, “Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures”, Math. Notes, 101:1 (2017), 31–38  crossref  isi
    30. Ganzburg M.I., “Multivariate polynomial inequalities of different
      $${L_{p,W}(V)}$$
      L p , W ( V ) -metrics with k-concave weights”, Acta Math. Hung., 150:1 (2016), 99–120  crossref  mathscinet  zmath  isi  scopus
    31. Bobkov S.G., Melbourne J., “Hyperbolic Measures on Infinite Dimensional Spaces”, Probab. Surv., 13 (2016), 57–88  crossref  mathscinet  zmath  isi  scopus
    32. Ganzburg M.I., “A multivariate Remez-type inequality with $\varphi$-concave weights”, Colloq. Math., 147:2 (2017), 221–240  crossref  mathscinet  zmath  isi  scopus
    33. Klartag Bo'az, “Needle Decompositions in Riemannian Geometry”, Mem. Am. Math. Soc., 249:1180 (2017), I–77  mathscinet  isi
    34. Temlyakov V. Tikhonov S., “Remez-Type and Nikol'Skii-Type Inequalities: General Relations and the Hyperbolic Cross Polynomials”, Constr. Approx., 46:3 (2017), 593–615  crossref  mathscinet  zmath  isi  scopus
    35. Brudnyi A., “Bernstein Type Inequalities For Restrictions of Polynomials to Complex Submanifolds of C-N”, J. Approx. Theory, 225 (2018), 106–147  crossref  mathscinet  zmath  isi  scopus
    36. Arutyunyan L.M., Kosov E.D., “Deviation of Polynomials From Their Expectations and Isoperimetry”, Bernoulli, 24:3 (2018), 2043–2063  crossref  mathscinet  zmath  isi  scopus
    37. Bogachev V.I., Kosov E.D., Zelenov G.I., “Fractional Smoothness of Distributions of Polynomials and a Fractional Analog of the Hardy-Landau-Littlewood Inequality”, Trans. Am. Math. Soc., 370:6 (2018), 4401–4432  crossref  mathscinet  zmath  isi  scopus
    38. Kosov E.D., “Fractional Smoothness of Images of Logarithmically Concave Measures Under Polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406  crossref  mathscinet  zmath  isi
    39. Ganzburg M.I., “Polynomial Inequalities on Sets With K (M) -Concave Weighted Measures”, J. Anal. Math., 135:2 (2018), 389–411  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Просмотров:
    Эта страница:591
    Полный текст:222
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019