RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2001, Volume 13, Issue 3, Pages 43–64 (Mi aa936)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

The group $\mathrm{Spin}_8$ and some subgroups of the unitary group of degree four over a quaternion algebra

E. L. Bashkirov


Full text: PDF file (1008 kB)

English version:
St. Petersburg Mathematical Journal, 2002, 13:3, 373–388

Bibliographic databases:
Received: 10.10.2000

Citation: E. L. Bashkirov, “The group $\mathrm{Spin}_8$ and some subgroups of the unitary group of degree four over a quaternion algebra”, Algebra i Analiz, 13:3 (2001), 43–64; St. Petersburg Math. J., 13:3 (2002), 373–388

Citation in format AMSBIB
\Bibitem{Bas01}
\by E.~L.~Bashkirov
\paper The group $\mathrm{Spin}_8$ and some subgroups of the unitary group of degree four over a~quaternion algebra
\jour Algebra i Analiz
\yr 2001
\vol 13
\issue 3
\pages 43--64
\mathnet{http://mi.mathnet.ru/aa936}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1850187}
\zmath{https://zbmath.org/?q=an:1009.20059}
\transl
\jour St. Petersburg Math. J.
\yr 2002
\vol 13
\issue 3
\pages 373--388


Linking options:
  • http://mi.mathnet.ru/eng/aa936
  • http://mi.mathnet.ru/eng/aa/v13/i3/p43

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bashkirov E. L., “Some completely reducible linear groups over a quaternion division ring containing a root subgroup”, Comm. Algebra, 31:12 (2003), 5727–5754  crossref  mathscinet  zmath  isi  scopus
    2. Bashkirov E.L., “Irreducible linear groups of degree 3 over a quaternion division ring containing a root subgroup”, Communications in Algebra, 32:5 (2004), 1747–1761  crossref  mathscinet  zmath  isi  scopus
    3. Bashkirov E. L., “Irreducible linear groups of degree four over a quaternion division algebra that contain a subgroup $\mathrm{diag}(T_3(K,\Phi_0),1)$”, J. Algebra, 287:2 (2005), 319–350  crossref  mathscinet  zmath  isi  elib  scopus
    4. Bashkirov E. L., “Irreducible linear groups of degree four over a quaternion division algebra that contain a root subgroup”, Comm. Algebra, 34:6 (2006), 1931–1948  crossref  mathscinet  zmath  isi  elib  scopus
    5. N. Vavilov, “Geometry of 1-tori in $\mathrm{GL}(n,T)$”, St. Petersburg Math. J., 19:3 (2008), 407–429  mathnet  crossref  mathscinet  zmath  isi  elib
    6. N. A. Vavilov, I. M. Pevzner, “Triples of long root subgroups”, J. Math. Sci. (N. Y.), 147:5 (2007), 7005–7020  mathnet  crossref  mathscinet  elib  elib
    7. Bashkirov E. L., “Completely reducible linear groups over a quaternion division algebra that contain a root subgroup”, Comm. Algebra, 35:3 (2007), 1019–1054  crossref  mathscinet  zmath  isi  elib  scopus
    8. N. A. Vavilov, V. V. Nesterov, “Geometriya mikrovesovykh torov”, Vladikavk. matem. zhurn., 10:1 (2008), 10–23  mathnet  mathscinet  elib
    9. I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, St. Petersburg Math. J., 23:3 (2012), 603–635  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    10. Bashkirov E.L., “On Subgroups of the Group $GL_7$ Over a Field That Contain a Chevalley Group of Type $G_2$ Over a Subfield”, J. Pure Appl. Algebr., 219:6 (2015), 1992–2014  crossref  mathscinet  zmath  isi  elib  scopus
  • Алгебра и анализ St. Petersburg Mathematical Journal
    Number of views:
    This page:184
    Full text:72
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020