RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Acta Arith., 2014, Volume 164, Issue 3, Pages 221–243 (Mi acta1)  

Sumsets in quadratic residues

I. D. Shkredovab

a Division of Algebra and Number Theory, Steklov Mathematical Institute, Gubkina St. 8, Moscow, Russia 119991
b Delone Laboratory of Discrete and Computational Geometry, Yaroslavl' State University, Sovetskaya St. 14, Yaroslavl', Russia 150000

Abstract: We describe all sets $A\subseteq \mathbb{F}_p$ which represent the quadratic residues $R\subseteq \mathbb{F}_p$ in the sense that $R=A+A$ or $R=A\hat{+}A$. Also, we consider the case of an approximate equality $R\approx A+A$ and $R\approx A\hat{+}A$ and prove that $A$ is then close to a perfect difference set.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00759
12-01-33080
Ministry of Education and Science of the Russian Federation 11.G34.31.0053
2519.2012.1
This work was supported by grant RFFI NN 11-01-00759, Russian Government project 11.G34.31.0053, Federal Program "Scientific and scientific-pedagogical staff of innovative Russia" 2009-2013, grant mol_a_ved 12-01-33080 and grant Leading Scientific Schools N 2519.2012.1.


DOI: https://doi.org/10.4064/aa164-3-2


Bibliographic databases:

Document Type: Article
MSC: 11B13, 11B50, 11B75
Language: English

Linking options:
  • http://mi.mathnet.ru/eng/acta1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019