RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Acta Arith., 2014, Volume 166, Issue 4, Pages 349–390 (Mi acta2)  

On large values of the Riemann zeta-function on short segments of the critical line

M. A. Korolevab

a National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye sh., 31, 115409 Moscow, Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, Gubkin St., 8, 119991 Moscow, Russia

Abstract: We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant $A>1$ there exist (non-effective) constants $T_0(A)>0$ and $c_0(A)>0$ such that the maximum of $|\zeta(0.5+it)|$ on the interval $(T-h,T+h)$ is greater than $A$ for any $T>T_0$ and $h=(1/\pi)\ln\ln\ln T+c_0$.

Funding Agency Grant Number
Russian Science Foundation 14-11-00433
The author is supported by Russian Scientific Fund (grant no. 14-11-00433).


DOI: https://doi.org/10.4064/aa166-4-3


Bibliographic databases:

Document Type: Article
MSC: 11M06
Language: English

Linking options:
  • http://mi.mathnet.ru/eng/acta2

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019