|
Algebra Discrete Math., 2007, выпуск 2, страницы 115–124
(Mi adm211)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
RESEARCH ARTICLE
On closed rational functions in several variables
Anatoliy P. Petravchuka, Oleksandr G. Ienaba a Kiev Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska street, 01033 Kyiv,
Ukraine
b Kiev Taras Shevchenko University and
Technische Universität Kaiserslautern,
Fachbereich Mathematik, Postfach 3049,
67653 Kaiserslautern, Germany
Аннотация:
Let $\mathbb{K}=\bar{\mathbb K}$ be a field of characteristic zero. An element $\varphi\in\mathbb K(x_1,…,x_n)$ is called a closed rational function if the subfield $\mathbb K(\varphi)$ is algebraically closed in the field $\mathbb K(x_1,…,x_n)$. We prove that a rational function $\varphi=f/g$ is closed if $f$ and $g$ are algebraically independent and at least one of them is irreducible. We also show that a rational function $\varphi=f/g$ is closed if and only if the pencil $\alpha f+\beta g$ contains only finitely many reducible hypersurfaces. Some sufficient conditions for a polynomial to be irreducible are given.
Ключевые слова:
closed rational functions, irreducible polynomials.
Полный текст:
PDF файл (625 kB)
Реферативные базы данных:
Тип публикации:
Статья
MSC: 26C15
Язык публикации: английский
Образец цитирования:
Anatoliy P. Petravchuk, Oleksandr G. Iena, “On closed rational functions in several variables”, Algebra Discrete Math., 2007, no. 2, 115–124
Цитирование в формате AMSBIB
\RBibitem{PetIen07}
\by Anatoliy~P.~Petravchuk, Oleksandr~G.~Iena
\paper On closed rational functions in several variables
\jour Algebra Discrete Math.
\yr 2007
\issue 2
\pages 115--124
\mathnet{http://mi.mathnet.ru/adm211}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2364068}
\zmath{https://zbmath.org/?q=an:1164.26329}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/adm211 http://mi.mathnet.ru/rus/adm/y2007/i2/p115
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
И. В. Аржанцев, А. П. Петравчук, “О насыщенности подполей инвариантов конечных групп”, Матем. заметки, 86:5 (2009), 659–663
; I. V. Arzhantsev, A. P. Petravchuk, “On the Saturation of Subfields of Invariants of Finite Groups”, Math. Notes, 86:5 (2009), 625–628 -
Petravchuk A.P., “On Pairs of Commuting Derivations of the Polynomial Ring in One Or Two Variables”, Linear Alg. Appl., 433:3 (2010), 574–579
|
Просмотров: |
Эта страница: | 95 | Полный текст: | 36 | Первая стр.: | 1 |
|