|
Algebra Discrete Math., 2007, выпуск 4, страницы 102–107
(Mi adm237)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
On one-sided Lie nilpotent ideals of associative rings
Victoriya S. Luchko, Anatoliy P. Petravchuk Kiev Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska street, 01033 Kyiv,
Ukraine
Аннотация:
We prove that a Lie nilpotent one-sided ideal of an associative ring $R$ is contained in a Lie solvable two-sided ideal of $R$. An estimation of derived length of such Lie solvable ideal is obtained depending on the class of Lie nilpotency of the Lie nilpotent one-sided ideal of $R$. One-sided Lie nilpotent ideals contained in ideals generated by commutators of the form $[\ldots[ [r_1, r_{2}],\ldots], r_{n-1}], r_{n}]$ are also studied.
Ключевые слова:
associative ring, one-sided ideal, Lie nilpotent ideal, derived length.
Полный текст:
PDF файл (204 kB)
Реферативные базы данных:
Тип публикации:
Статья
MSC: 16D70
Язык публикации: английский
Образец цитирования:
Victoriya S. Luchko, Anatoliy P. Petravchuk, “On one-sided Lie nilpotent ideals of associative rings”, Algebra Discrete Math., 2007, no. 4, 102–107
Цитирование в формате AMSBIB
\RBibitem{LucPet07}
\by Victoriya~S.~Luchko, Anatoliy~P.~Petravchuk
\paper On one-sided Lie nilpotent ideals of associative rings
\jour Algebra Discrete Math.
\yr 2007
\issue 4
\pages 102--107
\mathnet{http://mi.mathnet.ru/adm237}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2423713}
\zmath{https://zbmath.org/?q=an:1164.16014}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/adm237 http://mi.mathnet.ru/rus/adm/y2007/i4/p102
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Luchko V.S., “On the Action of Derivations on Nilpotent Ideals of Associative Algebras”, Ukr. Math. J., 61:7 (2009), 1187–1191
|
Просмотров: |
Эта страница: | 91 | Полный текст: | 37 | Первая стр.: | 1 |
|